Surgical dressings

Dr.N.Damodharan
Professor and head
Department of pharmaceutics
SRM college of pharmacy
Surgical dressings & sutures

• Composed of fibres
 – A solid characterized by
 • Flexibility
 • Fineness
 • High ratio of length: thickness
 – length at least 1000 times their breadth

• Important to:
 – Forensic science
 – Pharmacy
 • For quality control
 • To determine price v quality for bulk purchasing

• Identification
 – Macroscopical examination
 – Chemical tests
 • Performed on a microscope slide
 • Observed under the microscope
Classification of fibres used in surgical dressings

- Dressings
 - Natural
 - Animal
 - Protein
 - wool
 - silk
 - Vegetable
 - Cellulose
 - cotton
 - chemical wood pulp
 - Man-made
 - Regenerated
 - Cellulose
 - viscose rayon
 - Synthetic
 - Polyamide
 - nylon
 - Polyester
 - terylene
Animal fibres

• WOOL
 – From the fleece of the sheep *Ovis aries*
 • Treated before use to degrease it
 – Washed with water, then soap solution, then bleached with sulphuric acid, (acetone removes wool fat), combed, graded
 – Made of
 • protein (keratin) [flame tested by burning]
 – Stretched (unstable) form β keratin
 » Elastic when let go
 – Unstretched (stable) form α keratin
 » Forms peptide links in chain strands
 – Also contains cysteine in sulphur bridges which give elasticity
 » [test for sulphur]
- **Made of**
 - 2 silk or fibroin fibres
 - cemented together with silk glue / sericin
 - Sericin removed by hot soap solution
 - fully extended chains of alanine and glycine
 - Non-elastic, don’t double up like wool
 - Contain no sulphur [negative sulphur test]

- **Uses**
 - Dressings a bit
 - eg Oil Silk BPC in surgery
 - to stop other dressings drying out, cover them
 - Sutures, ligatures
 - Non-absorbable
 - Quite strong
 - Do not disintegrate when wet

- **Microscopically**
 - A solid rod-like fibre
 - Lack of cellular structure
 - No distinguishing features
Animal fibres - different microscopically, differentiated by following chemical tests:

<table>
<thead>
<tr>
<th>Test</th>
<th>Wool</th>
<th>Silk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burn in flame</td>
<td>Smell of "burnt hair"</td>
<td>Smell of "burnt hair"</td>
</tr>
<tr>
<td>Millon's reagent. Immerse in a hot soln. for 2 mins.</td>
<td>Red to pink colour</td>
<td>Red to pink colour</td>
</tr>
<tr>
<td>Picric Acid. Immerse for 5 mins in a hot saturated aqueous soln. Wash well with water.</td>
<td>Stained yellow</td>
<td>Stained yellow</td>
</tr>
<tr>
<td>Warm 5% KOH</td>
<td>Soluble</td>
<td>Insoluble</td>
</tr>
<tr>
<td>Conc. HCl</td>
<td>Insoluble</td>
<td>Soluble</td>
</tr>
<tr>
<td>CuOxam</td>
<td>Stains blue</td>
<td>Soluble</td>
</tr>
<tr>
<td>Sulphoprotein test. Dissolve in warm 20% NaOH, and add a few drops 10% lead acetate solution.</td>
<td>Black precipitate of lead sulphide</td>
<td>No precipitate</td>
</tr>
</tbody>
</table>
Vegetable fibres

• COTTON
 • Cheap and used a lot
 • USA produces about half; rest Egypt, India, South America

 – Source
 • epidermal trichomes covering seeds of *Gossypium herbaceum*
 – Ginning – removes long hairs (better quality)
 – Linter – removes remaining short hairs
 » Gives poorer quality cotton (→ cotton wool)
 » Made into chemical pulp or viscose rayon
 – Then seeds are pressed to get cotton seed oil
 – Then seeds used as animal crop
- **Production**
 - Raw cotton has a waxy (fatty) cuticle covering the trichome
 - Making it fairly non-absorbent
 - Removed by soaking (or pressure heating) loosened cotton in alkali (NaOH, KOH)
 - To get absorbent cotton (trichome wall is absorbent)
 - Then washed, bleached and mechanically loosened ‘scutched’

- **Grades**
 - Raw cotton
 - very impure, only used to absorb spillages
 - Hospital quality absorbent cotton wool
 - poorer quality to BPC
 - BPC
 - has some impurities
 - almost impossible to remove all as too expensive
 - BPC has limits
 » certain amount of shell & leaf material allowable
 » Want a minimum for surgical procedures
 » (rarely used in the body cavity or wrapped in gauze first to prevent loose fibres going into the body)
- Made of
 - Primary and secondary cellulose cell walls
 - Secondary wall constitutes the main bulk of cotton
 - Raw cotton consists of 90% cellulose
 - Cellulose molecule made of glucose residues
 - Repeating unit is ‘cellibiose’ = 2 glucose residues linked by a 1-4β glucosidic bond

- Uses
 - Bandages – gauze linen in very absorbent

- Microscopically (of unbleached cotton)
 - Unicellular hairs look like flattened twisted hose pipes
 - [Staining with CuOxam -> ballooning]
• CHEMICAL WOOD PULP (WOOD)

– Derived from pine and spruce wood ‘off cuts’

– Production
 • ‘Delignified wood’ produced by “Sulphite process” to leave the cellulose
 – Wood chopped into chips – allows penetration
 – Calcium bisulphite and H₂SO₄ added to hydrolyse any material other than cellulose
 – Then washed, bleached, rolled, pressed into board and dried

– Composed of cellibiose

– Uses
 • Cellulose wadding BPC
 – Easily disintegrated
 » no intrinsic structure so falls apart when wet
 » not used for dressings
 – but to catch and absorb spillage of wounds, heavy discharge and incontinence

– Microscopically
 • Looks like tracheids with border pits [distinguishes it from cotton]
• JUTE
 • Phloem fibres from stem bark
 • *Corchorus capsularis*, *C. olitorius*, other species
 • Bengal delta region, Assam, Bihar, Orissa
 • Fibres separated -> hesian and sacking
 • Remaining short fibres ‘tow’ – jute in pharmacy
 • Lignocellulose; nitric acid, potassium chlorate used to disintegrate bundles

• FLAX
 • Pericyclic fibres of *Linum usitatissimum* stem
 • Commercial fibres show fine tranverse injuries from preparation
 • Good quality fibre only lignified in middle lamella

• HEMP
 • pericyclic fibres of *Cannabis sativa* stem
 • Mostly cellulose, minimal lignification
 • Fibre ends bluntly rounded, some forked from injury
 • Lumen flattened or oval
• **CELLULOSE ACETATE**

 • Largely superseded by synthetic fibres

 – **Production:**
 • Cotton linters and delignified wood pulp -> purified cellulose
 – Partially acetylated by mixing with glacial acetic acid, acetic anhydride and a catalyst
 – Precipitates as acid-resin flakes
 – These are dissolved in acetone
 – Then the solution is filtered and spun down a column of warm air
 • Produces filaments made of 200-300 ‘glucose’ residue units

 – **Properties:**
 – Less absorbent that viscose rayon
 » Unsuitable for surgical dressings
 – Loses less strength when wet
 » Use: component of plastic splinting bandage
 – Like Nylon produces static electricity

 – **Macro/microscopically**
 – Similar to viscose rayon
• **ALGINATE**

Laminaria hyperborea, other sp, Ascophyllum

– Alginic acid comes from cell walls of brown algae

– **Production:**
 • Alginate fibres are produced by a similar process to viscose rayon
 – Sodium alginate solution is pumped through a spinneret immersed in a bath of CaCl solution (acidified with HCl)
 – Water insoluble calcium alginate is precipitated as continuous filaments
 – Collected, washed, dried, reduced to staple form which is processed to calcium alginate wool or a fabric Eg gauze

– **Composed of**
 • polymers of mannuronic and guluronic acids

– **Uses**
 • absorbable haemostatic surgical dressings
 – internal – neurosurgery; external – burns, skin graft sites
 • bacterial swabs

– **Microscopy**
 • Similar to viscose rayon (solid grooved rods)
Synthetic fibres

• Polyamides
 – NYLON
 • Condensation polymer
 • Made of adipic acid and hexamethylene diamine
 • Polypeptide chain
 • Like silk structurally
 • Can be autoclaved
 • Very strong material
 • Use: sutures

• Polyesters
 – TERYLENE
 • Condensation polymer resin
 • Made of ethylene glycol and terephthalic acid
 • Can be autoclaved
 • [Distinguished by chemical tests]
 • Use: sutures, (preparation of artificial grafts)