DSC05371.JPG

Dr. Ranjit Thapa, Associate, IASc, Bangalore

Ph.D

Associate Professor

Group Abstract

In current date first-principles based simulations can provide a fast and cost effective way to screen the materials and predict their relative performance. In reality to test every material to find the best possible one by experimentalist, need huge resource, funding and off-course long time. The first-principles based calculation can also predict new materials for different application and can provide the robust theory behind different experimental observation. Our group is primarily focused on first-principles based investigation of “low dimensional and Pt-free material as catalyst for CO oxidation, Oxygen reduction reaction (ORR) and CO2 conversion”, “materials for hydrogen storage”, “electrode materials for ion-Bateries” and “Solar Absorber Layer Materials”.

Website: http://www.ranjitcmslab.com

Important Findings

  • New type of carbon based anode materials (having both sp2 and sp3 bond), better than sp2 bonded graphite and sp3 bonded Si structure
  • Surface Magnetism in case of Amine functionalized graphene, doorway to spintronics
  • The five rings in the BN-60 structures (analogues to C60) developed the homonuclear B and N bonds
  • Homonuclear B-B bonds can anchor both O2 and CO molecules, because of charge transfer to π* orbital from the surface states and found to be potential candidates for CO oxidation via Langmuir–Hinshelwood (LH) mechanism
  • B-B-B sites can adsorb CO2 molecule, through bending of CO2 molecule, which results in splitting of LUMO orbitals named 2a and 2b, of which 2b can readily accept the electrons
  • The presence of water enhances the catalytic activity and help for de-poisoning
  • Electron-doped h-BN as metal-free catalyst outperforms the reported metal based catalyst
  • CO oxidation on SiC monolayer prefers ER mechanism. CO oxidation on SiC Thin film prefers LH mechanism. Graphitic and Ag-111 substrates help in tuning the CO oxidation mechanism
  • The origin of catalytic property of graphene based catalysts is explained based on the occupancy of pz orbitals
  • The competition between epoxy and enolate configuration on graphene based surfaces under different doping condition has been identified and explained
  • The origin of adsorption capabilities of DV-Defect is explained
  • The O2 adsorption in superoxo state is likely to lead to a more efficient oxygen reduction reaction (ORR) than that in the peroxo state
  • MgO/Ag-111 structure is proposed as Inverse catalyst for ORR catalyst with high on-set potential and has resistance to CO contamination
  • Introduced Bond Exchange spillover mechanism using external mediators: New suggestion

Projects

1.

Project Title:Dioxygen reduction using low dimensional materials in the energy generation/ storage device: first principles study - Department of Science and Technology (SERB) under Young Scientists Scheme: PI:Dr. Ranjit Thapa– March 2014 to March 2017. Completed

2.

Project Title: Development of Electrode Materials for High Energy Density Lithium ion Batteries and Computational Studies of Solar Absorber layers, Co-PI: Ranjit Thapa (Full computational Part), – May 2016 to May 2019. On-going

3

Project Title: First principles identification of descriptor for carbon based catalyst, Board of Research in Nuclear Sciences (BRNS), PI: Dr. Ranjit Thapa – Submitted

4

Project Title:Mechanistic of CO oxidation on metal free catalyst and property package, Department of Science and Technology (SERB) under Extramural Research Funding (individual centric): PI: Dr. Ranjit Thapa and Co-PI: Bhalchandra A. Kakade, On-Going

5

Project Title: New carbon allotrope as anode material for high density LiB's: Mechanistic and Database, DST - Special Call, Materials for Energy Storage” (MES) - 2017, PI: Dr. Ranjit ThapaSubmitted.

 

First-Principles Based Study:

(1) Oxygen Reduction Reaction, Metal-Free catalyst

(2) CO oxidation, CO2 capturing, Water splitting and Hydrogen storage.

(3) Two dimensional nanostructures

(4) Solar Absorber Layer Materials

(5) Electrode Materials for Li-ion batteries

 

Website: http://www.ranjitcmslab.com

Please check the link for details
 
 

Total Number of Publication - 58
h-index – 17
Cumulative Impact Factor: 221.25

Website: http://www.ranjitcmslab.com

Publications

2017

1] Ag nanoparticles decorated molybdenum oxide structures: Growth, characterizations, DFT studies and their application for enhanced field emission" Puspendu Guha,; Arnab Ghosh, Ranjit Thapa, E. Mathan Kumar,  Ponnambalam, Sabari kirishwaran, Ranveer Singh, Rarlapalli Satyam, Nanotechnology, accepted, 2017. IF: 3.44

2] Role of oxygen functionality on the band structure evolution and conductance of reduced graphene oxide, Rajarshi Roy, Ranjit Thapa, Soubhik Chakrabarty, Arunava Jha, E. Mathan Kumar, Kalyan K. Chattopadhyay, Chemical Physics Letters, 677, 2017, 80-86. IF: 1.815

3] S. Nandhini, A. Rajkamal, Biswajit Saha and Ranjit Thapa*, First-Principles Identification of Site Dependent Activity of Graphene based Catalyst, Molecular Catalysis, 432, 2017, 242 249*Corresponding Author IF: 4.211

4] Shatabda Bhattacharya, E. Mathan Kumar, Ranjit Thapa and Shyamal K. Saha, “Interlayer exchange coupling in Ni(OH)2/Graphene/Ni(OH)2 nanostructure using charge transfer effect at the interface”, Applied Physics Letter, 110, 2017, 032404. IF: 3.411

5] Paramita Banerjee, Soubhik Chakrabarty, Ranjit Thapa*and G.P. Das, Exploring the catalytic activity of pristine T6[100] surface for oxygen reduction reaction: A first-principles study, Applied Surface Science, 418, 2017, 56-63. *Corresponding Author IF: 3.387

6] Arun Bera, Kamanashis Sarkar, Krishna Deb, Ranjit Thapa, Biswajit Saha, Schottky diode behaviour with excellent photoresponse in NiO/FTO heterostructure, Applied Surface Science, 418, 2017, 328-334. IF: 3.387

7] Soubhik Chakrabarty, Tisita Das, Paramita Banerjee, Ranjit Thapa, G. P. Das, Electron doped C2N monolayer as efficient noble metal-free catalysts for CO oxidation, Applied Surface Science, 418, 2017, 92-98 . *Corresponding Author IF: 3.387

8] Arun Bera, Krishna Deb, A Kathirvel, T Bera, Ranjit Thapa, Biswajit Saha, Flexible diode of Polyaniline/ITO heterojunction on PET substrate, Applied Surface Science, 418, 2017, 264-269. IF: 3.87

2016

9] A. Rajkamal, E. Mathan Kumar, V. Kathirvel, Noejung Park, and Ranjit Thapa*, “Si doped T6 carbon structure as an anode material for Li-ion batteries: An ab initio study”, Scientific Reports, 6, 37822 2016*Corresponding Author IF: 4.259

10] Rajarshi Roy#Ranjit Thapa#, Gundam S. Kumar, Nilesh Mazumder, Dipayan Sen, S. Sinthika, Nirmalya S. Das and Kalyan K. Chattopadhyay, “Colossal magnetoresistance in amino functionalized graphene quantum dots at room temperature: Manifestation of weak anti-localization and doorway to spintronics”, Nanoscale, 8, 8245-8254, 2016. #Same Contribution IF: 7.367

11] S. Sinthika, Vala Surya Teja, Y. Kawazoe, Ranjit Thapa* CO Oxidation Prefers Eley–Rideal or Langmuir–Hinshelwood Pathway: Monolayer vs. Thin Film of SiC. ACS Applied Materials & Interface, 8, 5290–5299, 2016. *Corresponding Author IF: 7.504

12] A. Ghosh, P. Guha, Ranjit Thapa, S. Sinthika, M. Kumar, B. Rakshit, T. Dash, P. V. Satyam, Tuning Work Function of Randomly Oriented ZnO nanostructures by capping with Faceted Au nanostructure and Oxygen defects: Enhanced Field Emission Experiments and DFT studies, Nanotechnology, 27, 125701, 2016. IF: 3.44

13] E. Mathan Kumar, B. Prajapat, B. Saha, Ranjit Thapa*, Spillover of Hydrogen on SiC-ML Surface: Doping Effect and Bond Exchange Mechanism, International Journal of Hydrogen Energy, 41, 3928, 2016. *Corresponding Author IF: 3.205

14] K. Iyakutti, E. Mathan Kumar, Ranjit Thapa, R. Rajeswarapalanichamy, V. J. Surya, Y. Kawazoe, Effect of multiple defects and substituted impurities on the band structure of graphene: a DFT study, J Mater Sci: Mater Electron, 2016. IF: 1.798

15] A. Bera, K. Deb, K.K. Chattopadhyay, Ranjit Thapa, B. Saha, Mixed phase delafossite structured p type CuFeO2/CuO thin film on FTO coated glass and its Schottky diode characteristics, Microelectronic Engineering, 162, 23–26, 2016. IF: 1.806

16] K. Iyakutti, E. Mathan Kumar, I. Lakshmi, Ranjit Thapa, R. Rajeswarapalanichamy, V. J. Surya, Y. Kawazoe, Effect of surface doping on the band structure of graphene: a DFT study, Journal of Materials Science: Materials in Electronics, 27, 2728, 2016. IF: 1.798

2015

17] U. N. Maiti, Ranjit Thapa, J. Lim, D. J. Li, S. O. Kim, Self-Size-Limiting Nanoscale Perforation of Graphene for Dense Heteroatom Doping,  ACS Applied Materials & Interface, 7, 25898, 2015. IF: 7.504

18] S. Sinthika, E. Mathan Kumar, V. J. Surya, Y. Kawazoe, Noejung Park, K. Iyakutti, Ranjit Thapa*, Activation of CO and CO2 on Homonuclear Boron Bonds of Fullerene-like BN Cages: First Principles Study,  Scientific Reports, 5, 17560, 2015. *Corresponding Author IF: 4.259

19] S. Sinthika, Ranjit Thapa*, Influence of enolate/epoxy configuration, doping and vacancy on the catalytic activity of graphene, RSC Advances, 5, 93215, 2015. *Corresponding Author IF: 3.108

20] Kusha Kumar Naik, Ruchita T. Khare, Rogerio V. Gelamo, Mahendra A. More, Ranjit Thapa, Dattatray J. Late,  Chandra Sekhar Rout, Enhanced electron field emission from NiCo2O4 nanosheet arrays, Material Research Express, 2 (2015) 095011. IF: 1.068

21] Soubhik Chakrabarty, A. H. M. Abdul Wasey, Ranjit Thapa,* G. P. Das, First principles design of divacancy defected graphene nanoribbon based rectifying and negative differential resistance device", AIP Advance, 5 (2015) 087163. *Corresponding Author, IF: 1.564

22] A. Samantara, D. Mishra, S. Suryawanshi, M. More, Ranjit Thapa, D. J. Late, B. K. Jena, C. S. Rout, “Facile synthesis of Ag nanowires-rGO composites and their promising field emission performance”, RSC Advance, 5 (2015) 41887. IF: 3.108

23] Dongbin Shin, Ranjit Thapa,* Noejung Park,* "An oxygen reduction catalytic process through superoxo adsorption states on n-type doped h-BN: a first-principles study", Current Applied Physics, 15, (2015) 727–732. *Corresponding Author, IF: 2.144

24] S. Nandy, Ranjit Thapa, M. Kumar, T. Som, N. Bundaleski, O. M.N.D. Teodoro, R. Martins, E. Fortunato, “Efficient Field Emission from Vertically Aligned Cu2O1δ(111) Nanostructure Influenced by Oxygen Vacancy”, Advance Functional Materials, 25 (2015) 947–956. IF: 12.124

25] S. Ratha, R. Khare, M. A. More, Ranjit Thapa, D. J. Late, C. S. Rout, "Field Emission properties of spinel ZnCo2O4 Microflowers", RSC Advance, 5 (2015) 5372-5378. IF: 3.289

26] E. Mathan Kumar, S. Sinthika and Ranjit Thapa,* "First principles guide to tune h-BN nanostructures as superior light element based hydrogen storage material: Role of bond exchange spillover mechanism", Journal of Materials Chemistry A, 3 (2015) 304-313. *Corresponding Author, IF: 8.262

27] A. Beraa, Ranjit Thapa, K. K. Chattopadhyay, B. Saha, In plane conducting channel at the interface of CdO-ZnO isotype thin film heterostructure, Journal of Alloys and Compounds, 632 (2015) 343-347. IF: 3.133

28] A. Debnatha, Ranjit Thapa, K. K. Chattopadhyay, B. Saha, Spectroscopic studies on interaction of Congo red with Ferric Chloride in aqueous medium for waste water treatment, Separation Science and Technology, 50 (2015) 1684-1688. IF: 1.083

29] Ranjit Thapa,* Saurabh Ghosh, S. Sinthika S, E. Mathan Kumar, Noejung Park, "Magnetic, elastic and optical properties of zinc peroxide (ZnO2): First principles study", Journal of Alloys and Compounds, 620 (2015) 156-163. *Corresponding Author, IF: 3.133

2014

30] K. K. Naik, R. Khare, D. Chakravarty, M. A. More, Ranjit Thapa,* D. J. Late,* C. S. Rout,* Field Emission properties of ZnO Nanosheet Arrays, Applied Physics Letters, 105 (2014) 233101.  *Corresponding Author, IF: 3.411

31] Dongbin Shin, S. Sinthika, Min Choi, Ranjit Thapa,* Noejung Park,* "Ab initio study of thin oxide-metal overlayers as an inverse catalytic system for dioxygen reduction with enhanced CO tolerance", ACS Catalysis, 4 (2014) 4074–4080. *Corresponding Author, IF: 10.614

32] D. Sen#Ranjit Thapa# and K. K. Chattopadhyay, "A first-principles investigation of oxygen reduction reaction catalysis capabilities of As decorated defect graphene", Dalton Transactions, 43 (2014) 15038. #Same Contribution, IF: 4.029

33] SSinthika, E. Mathan Kumar, Ranjit Thapa*, Doped h-BN monolayer as efficient noble metal-free catalysts for CO oxidation: role of dopant and water in activity and catalytic de-poisoning", Journal of Materials Chemistry A, 2 (2014) 12812 - 12820. *Corresponding Author, IF: 8.867

34] D. Sen, Ranjit Thapa, K. K. Chattopadhyay, "Rules of B-N doping in defect graphene sheet: A first-principles investigation of bandgap tuning and ORR catalysis capabilities", Chem Phys Chem, 15 (2014) 2542-2559. IF: 3.075

35] G. Sandeep Kumar, Rajarshi Roy, Dipayan Sen, Uttam K. Ghorai, Ranjit Thapa,  Nilesh Mazumder, Subhajit Saha and Kalyan K. Chattopadhyay, "Amino-functionalized Graphene Quantum Dots: Origin of Tunable Hetrogeneous Photoluminescence" Nanoscale6 (2014) 3384-3391. IF: 7.367

2013

36] Ranjit Thapa*, G. P. Das, "Optical and Vibrational properties of hydrogenated BN-sheet: First Principle study", Applied Surface Science, 284 (2013) 638– 643. *Corresponding Author, IF: 3.87

37] Ruiguo Cao, Ranjit Thapa, Hyejung Kim, Xiaodong Xu, Min Gyu Kim, Qing Li, Noejung Park, Meilin Liu, Jaephil Cho, Promotion of Oxygen Reduction by a Bio-inspired FePc-Py-CNTs Catalyst, Nature Communications, 4 (2013) Article No. 2076. IF: 12.124

38] D. Sen, Ranjit Thapa, K. K. Chattopadhyay, "Small Pd cluster adsorbed double vacancy defect graphene sheet for hydrogen storage: A first-principles study", International Journal of Hydrogen Energy38 (2013) 3041. IF: 3.582

2012

39] Ranjit Thapa, Noejung Park, "First-Principles Identification of Iodine Exchange Mechanism in Iodide Ionic Liquid", The Journal of Physical Chemistry Letters, 3 (2012) 3065−3069. IF: 9.353

40] Ranjit Thapa, S. Maiti, T. H. Rana, U. N. Maiti and K. K. Chattopadhyay, “TiO2 Nanoparticles synthesis via simple hydrothermal route: Degradation of Orange II, Methyl Orange and Rhodamine B”, Journal of Molecular Catalysis A: Chemical363-364 (2012) 223-229. IF: 4.211

41] A Jha, Ranjit Thapa and K. K. Chattopadhyay, “Structural transformation from Mn3O4 nanorods to nanoparticles and band gap tuning via Zn doping”, Materials Research Bulletin47 (2012) 813-819. IF: 2.446

42] D. Sen, Ranjit Thapa, K. Bhattacharjee and K. K. Chattopadhyay, “Site dependent metal adsorption on (3x3) h-BN monolayer: Stability, Magnetic and Optical properties”, Computational Materials Science56 (2012) 165-171. IF: 2.296

2011

43] A. Sen, U.N. Maiti, Ranjit Thapa and K. K. Chattopadhyay, “Temperature-dependent ac conductivity and dielectric response of vanadium doped CaCu3Ti4O12 ceramic”, Applied Physics A: Materials Science and Processing, 104 (2011) 1105-1111. IF: 1.455

44] Ranjit Thapa, D. Sen, M. K. Mitra, and K. K. Chattopadhyay, “Palladium atoms and its dimers adsorbed on graphene: first principles study”, Physica B: Condensed Matter, 406 (2011) 368–373. IF: 1.386

2010

45] Ranjit Thapa, B. Saha and K. K. Chattopadhyay, “First principles analysis on V3+ doped aluminum nitride” Computational Materials Science”, 49 (2010) 363-67. IF: 2.296

46] Ranjit Thapa, B. Saha, U. N. Maiti, N.S. Das and K. K. Chattopadhyay, “Self filling of Ni nanoparticles in amorphous AlN nanotubes” Applied Surface Science256 (2010) 3988–3992. IF: 3.387

47] A. Sen, U.N. Maiti, Ranjit Thapa and K. K. Chattopadhyay, “Effect of vanadium doping on the dielectric and nonlinear current-voltage characteristics of CaCu3Ti4O12 ceramic”, Journal of Alloys and Compounds, 506 (2010) 853-857. IF: 3.133

48] U. N. Maiti, S. Maiti, Ranjit Thapa and K. K. Chattopadhyay, “Flexible cold cathode with ultralow threshold field designed through wet chemical route”, Nanotechnology, 21 (2010) 505701. IF: 3.44

49] N. S. Das, B.Saha, Ranjit Thapa, G. C. Das, K. K. Chattopadhyay, “Band gap widening of nanocrystalline nickel oxide thin films via phosphorus doping”, Physica E, 42 (2010) 1377–1382. IF: 2.221

50] B. Saha, Ranjit Thapa, N. S. Das and K. K. Chattopadhyay, “Intentionally incorporated defect and its consequences in oxide thin film through Radio Frequency Magnetron Sputtering Technique”, Indian Journal of Physics, 84 (2010) 681-685. IF: 0.988

51] Ranjit Thapa, B. Saha, S. Goswami and K. K. Chattopadhyay, “Study of field emission and dielectric properties of AlN films prepared by DC sputtering technique at different substrate temperatures”, Indian Journal of Physics 84(10) (2010) 1343-1350. IF: 0.988

52] B. Saha, Ranjit Thapa, S. Jana and K. K. Chattopadhyay”, Optical and Electrical Properties of P-type Transparent Conducting CuAlO2 Thin film Synthesized by Reactive Radio Frequency Magnetron Sputtering Technique”, Indian Journal of Physics 84(10) (2010) 1337-1342. IF: 0.988

2009

53] Ranjit Thapa, B. Saha and K. K. Chattopadhyay,“Enhanced field emission from Si doped nanocrystalline AlN thin films” Applied Surface Science, 255 (2009) 4536–4541. IF: 3.387

54] Ranjit Thapa, B. Saha, K. K. Chatopadhyay, “Synthesis of cubic aluminum nitride by VLS technique using gold chloride as a catalyst and its optical and field emission properties”, Journal of Alloys and Compounds, 475 (2009) 373–377. IF: 3.133

55] B. Saha, Ranjit Thapa, K. K. Chattopadhyay, “A novel route for the low temperature synthesis of p-type transparent semiconducting CuAlO2” Materials Letters, 63 (2009) 394–396. IF: 2.572

2008

56] S. Jana, Ranjit Thapa, R. Maity and K. K. Chattopadhyay, “Optical and dielectric properties of PVA capped nanocrystalline PbS thin films synthesized by chemical bath deposition” Physica E 40 (2008) 3121– 3126. IF: 2.221

57] B. Saha, Ranjit Thapa, K. K. Chattopadhyay, “Wide range tuning of electrical conductivity of RF sputtered CdO thin films through oxygen partial pressure variation”, Solar Energy Materials and Solar Cells, 92 (2008) 1077– 1080. IF: 4.738

58] B. Saha, Ranjit Thapa, K. K. Chattopadhyay, “Band gap widening in highly conducting CdO thin film by Ti incorporation through radio frequency magnetron sputtering technique”, Solid State Communications, 145 (2008) 33–37. IF: 1.554

1.

Course Name: Quantum Mechanics – Even Semester

 

Course Code: NT1008

 

Question Bank 

2

Couse Name: Spintronics – Odd Semester

 

Course Code:NT0431

3

Couse Name: Spintronics – Modeling Tools and Techniques for micro and nano systems.

 

Course Code:NT1019

 

 

Course Design
1. Nanocatalyst
2. 2-D layered Nanomaterials
3. Quantum Mechanics 

 

Website: http://www.ranjitcmslab.com 

 

Email: ranjit.t@res.srmuniv.ac.in,
Telephone: +91-44-2741-7918
Fax: +91-44-2745-6702
SRM-HPCC
Website: http://www.ranjitcmslab.com

 

Opening for JRF position under SERB-EMR funded project, please click the link for more detail

http://www.srmuniv.ac.in/careers/faculty/jrf-dst-serb-nanotech-2017