Unit-I

INTRODUCTION
1 Characterization of distributed systems

1.1 Introduction

What is a Distributed System?

A distributed system is one in which computers communicate and coordinate their actions only by passing messages.

A distributed system consists of a collection of autonomous computers linked by a computer network and equipped with distributed system software. This software enables computers to coordinate their activities and to share the resources of the system hardware, software, and data.
How to characterize a distributed system?

- concurrency of components
- lack of global clock
- independent failures of components

Leslie Lamport :-)
You know you have a distributed system when the crash of a computer you’ve never heard of stops you from getting any work done!

Prime motivation: to share resources
What are the challenges?

• heterogeneity of their components
• openness
• security
• scalability – the ability to work well when the load or the number of users increases
• failure handling
• concurrency of components
• transparency
• providing quality of service
1.2 Examples of distributed systems

Distributed Systems application domains connected with networking:
<table>
<thead>
<tr>
<th>Category</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finance and commerce</td>
<td>eCommerce e.g. Amazon and eBay, PayPal, online banking and trading</td>
</tr>
<tr>
<td>The information society</td>
<td>Web information and search engines, ebooks, Wikipedia; social networking: Facebook and MySpace</td>
</tr>
<tr>
<td>Creative industries and entertainment</td>
<td>online gaming, music and film in the home, user-generated content, e.g. YouTube, Flickr</td>
</tr>
<tr>
<td>Healthcare</td>
<td>health informatics, on online patient records, monitoring patients</td>
</tr>
<tr>
<td>Education</td>
<td>e-learning, virtual learning environments; distance learning</td>
</tr>
<tr>
<td>Transport and logistics</td>
<td>GPS in route finding systems, map services: Google Maps, Google Earth</td>
</tr>
<tr>
<td>Science</td>
<td>The Grid as an enabling technology for collaboration between scientists</td>
</tr>
<tr>
<td>Environmental management</td>
<td>sensor technology to monitor earthquakes, floods or tsunamis</td>
</tr>
</tbody>
</table>
Characterization of Distributed Systems

1.2 Examples of distributed systems

1.2.1 Web search

An example: Google

Highlights of this infrastructure:

- Physical infrastructure
- Distributed file system
- Structured storage system
- Lock service
- Programming model

Examples

- EVE Online client-server architecture!
- EverQuest more distributed
- Research on completely decentralized approaches based on peer-to-peer (P2P) technology
1.2.3 Financial trading

- Distributed even-based systems

- Reuters market data events

- FIX events (events following the specific format of the Financial Information eXchange protocol)
1.3 Trends in distributed systems

• emergence of pervasive networking technology

• emergence of ubiquitous computing coupled with the desire to support user mobility

• multimedia services

• distributed systems as utility

1.3.1 Pervasive networking and the modern Internet

networking has become a pervasive resource and devices can be connected at any time and any place
Characterization of Distributed Systems

A typical portion of the Internet:

- ISP
- Intranet
- Satellite link
- Backbone

Desktop computer: 🖥️
Server: 🎥
Network link: ⤵️
1.3 Characterization of Distributed Systems

1.3.2 Mobile and ubiquitous computing

- laptop computers

- handheld devices (mobile phones, smart phones, tablets, GPS-enabled devices, PDAs, video and digital cameras)

- wearable devices (smart watches, glasses, etc.)

- devices embedded in appliances (washing machines, refrigerators, cars, etc.)
Portable and handheld devices in a distributed system

• mobile computing
• location/context-aware computing
• ubiquitous computing
• spontaneous interoperability
• service discovery
1.3.3 Distributed multimedia systems

- live or pre-ordered television broadcasts
- video-on-demand
- music libraries
- audio and video conferencing
1.3.4 Distributed computing as a utility

- Cluster computing
- Grid computing
1.4 Sharing resources

What are the resources?

• Hardware
 – Not every single resource is for sharing

• Data
 – Databases
 – Proprietary software
 – Software production
 – Collaboration
Sharing Resources

• Different resources are handled in different ways, there are however some generic requirements:

 – Namespace for identification
 – Name translation to network address
 – Synchronization of multiple access
1.5 Challenges

1.5.1 Heterogeneity

Heterogeneity – variety and difference in:

- networks
- computer hardware
- OS
- programming languages
- implementations by different developers
Characterization of Distributed Systems

1.5 Challenges

Middleware

- *middleware* – software layer providing:
 - programming abstraction
 - masking heterogeneity of:
 - underlying networks
 - hardware
 - operating systems

Heterogeneity and mobile code

Mobile code – programming code that can be transferred from one computer to another and run at the destination (Example: think Java applets)

Virtual machine approach – way of making code executable on a variety of host computers – the compiler for a particular language generates code for a virtual machine instead of a particular hardware order code.
Openness

OPENNESS of a:

computer system - can the system be extended and reimplemented in various ways?

distributed system - can new resource-sharing services be added and made available for use by a variety of client programs?
An open system has:

- uniform communication mechanism
- published interfaces to shared resources

Open DS - heterogeneous hardware and software, possibly from different vendors, but conformance of each component to published standard must be tested and verified for the system to work correctly.
Characterization of Distributed Systems

1.5 Challenges

1.5.3 Security

1. Confidentiality – protection against disclosure to unauthor

2. Integrity – protection against alteration or corruption

3. Availability – protection against interference with the means

Security challenges not yet fully met:

- denial of service attacks
- security of mobile code
1.5.4 Scalability

– the ability to work well when the system load or the number

Challenges with building scalable distributed systems:

• Controlling the cost of physical resources

• Controlling the performance loss

• Preventing software resources running out (like 32-bit internet addresses, which are being replaced by 128 bits)

• Avoiding performance bottlenecks

– Example: some web-pages accessed very frequently – remedy: caching and replication
Techniques for dealing with failures

• Detecting failures

• Masking failures

1. Messages can be retransmitted

2. Disks can be replicated in a synchronous action

• Tolerating failures

• Recovery from failures
Characterization of Distributed Systems

1.5 Challenges

- Redundancy

 - redundant components

 1. at least two different routes

 2. like in DNS every name table replicated in at least two different servers

 3. database can be replicated in several servers

Main goal: **High availability** – measure of the pro for use
Characterization of Distributed Systems

6. Concurrency

Example: Several clients trying to access shared resource at the same time

Any object with shared resources in a DS must be responsible that it operates correctly in a concurrent environment

Discussed in Chapters 7 and 17 in the book

7. Transparency

Transparency – concealment

separation of components in a Distributed System for the system to be perceived as a whole rather than a collection of independent components
Characterization of Distributed Systems

1.5 Challenges

- **Access transparency** – access to local and remote resources identical

- **Location transparency** – resources accessed without knowing their physical or network location

- **Concurrency transparency** – concurrent operation of processes using shared resources without interference between them

- **Replication transparency** – multiple instances seem like one

- **Failure transparency** – fault concealment

- **Mobility transparency** – movement of resources/clients within a system without affecting the operation of users or programs
Main nonfunctional properties of systems that affect Quality of Service (QoS):

- reliability
- security
- performance

Additional property to meet changing system configuration and resource availability:

- adaptability
1.6 Case study: The World Wide Web

CERN 1989

hypertext structure, hyperlinks

- Web is an open system
- Content standards freely published and widely implemented
- Web is open with respect to types

Figure 1.7 Web servers and web browsers
Characterization of Distributed Systems

1.6 Case study: The World Wide Web

HTML

HyperText Markup Language www.w3.org
URL-s
Uniform Resource Locators (also known as URI-s - Uniform Resource Identifiers)

http://servername[:port][/pathName][?query][#fragment]

HTTP

• Request-reply interactions
• Content types
• One resource per request
• Simple access control
• Dynamic

pages Web
The Extensible Markup language (XML) designed to represent data in standard, structured, application-specific way. XML data can be transmitted by POST and GET operations.

- Semantic web – web of linked metadata

Web as a system – main problem – the problem of scale.