ABSORPTION, DISTRIBUTION, METABOLISM AND EXCRETION

- relevant to ALL drugs
- large research/development area
- frequent cause of failure of treatment
 + failure of compliance
 + failure to achieve effective level
 + produce toxic effects
 + drug interactions (*******)
- can enhance patient satisfaction with treatment
- understand different dosage forms available
Most drugs:

- enter the body (by mouth or injection or...) - must cross barriers to entry (skin, gut wall, alviolar membrane.....)
- are distributed by the blood to the site of action - intra- or extra-cellular - cross barriers to distribution (capillaries, cell wall....) - distribution affects concentration at site of action and sites of excretion and biotransformation
- are biotransformed perhaps to several different compounds by enzymes evolved to cope with natural materials - this may increase, decrease or change drug actions
- are excreted (by kidney or) which removes them and/or their metabolites from the body

Pharmacokinetics is the quantification of these processes
Some drugs work outside the body (barrier creams, some laxatives) but most must:

- enter the body:

Given by: ENTERAL - oral, sublingual, buccal, rectal
PARENTERAL sc, im, iv, it

- cross lipid barriers / cell walls:

gut wall, capillary wall, cell wall, blood brain barrier

--- get into the body and (after distribution) to reach the cellular target ---
PASSAGE THROUGH LIPID MEMBRANES

- diffusion through gaps between cells (glomerulus = 68K; capillary 30K; NB brain capillary - tight junction)
- passage through the cell membrane
 + diffuse through pore (very small; use dependent)
 + carrier mediated transport (specific, saturable; Fe in gut; L-DOPA at blood-brain barrier)
 + pinocytosis (insulin in CNS; botulinum toxin in gut)
 + diffusion through lipid of cell membrane (depends on AREA, DIFFUSION GRADIENT, DIFFUSION COEFFICIENT, LIPID SOLUBILITY)
LIPID SOLUBILITY: WEAK ACIDS AND WEAK BASES

HA \rightleftharpoons H$^+$ + A$^-$

$\text{pK}_a = \text{pH} + \log(\text{HA/A}^-)$

B + HCl \rightleftharpoons BH$^+$ + Cl$^-$

$\text{pK}_a = \text{pH} + \log(\text{BH}^+/\text{B})$

Aspirin $\text{pK}_a = 4.5$ (weak acid)

100mg orally

Stomach pH = 2

Blood pH = 7.4

99.9 = [UI]

0.1 = [I]

Aspirin is reasonably absorbed from stomach (fast action)

Strychnine $\text{pK}_a = 9.5$ (weak base)

100mg orally

Stomach pH = 2

Blood pH = 7.4

99.9 = [UI]

0.1 = [UI]

Strychnine not absorbed until enters duodenum
ROUTES OF ADMINISTRATION

- Enteral; oral, sub-lingual (buccal), rectal. Note soluble, enteric coated or slow release formulations
- Parenteral; iv, im, sc, id, it, etc. Different rates of absorption, different plasma peaks. Note iv infusors
- Skin; for local or systemic effect - note patches
- Lungs; inhalation; local or systemic effect?
- Vaginal; (usually local)
- Eye; (usually local)
FACTORS AFFECTING ORAL ABSORPTION

- Disintegration of dosage form
- Dissolution of particles
- Chemical stability of drug
- Stability of drug to enzymes
- Motility and mixing in GI tract
- Presence and type of food
- Passage across GI tract wall
- Blood flow to GI tract
- Gastric emptying time
- FORMULATION
BIOAVAILABILITY

- the proportion of the drug in a dosage form available to the body

i.v injection gives **100% bioavailability**.

Calculated from comparison of the area under the curve (AUC) relating plasma concentration to time for iv dosage compared with other route.

Says nothing about effectiveness.
BIOAVAILABILITY

Dose

Destroyed in gut

Not absorbed

Destroyed by gut wall

Destroyed by liver

to systemic circulation
SUSTAINED RELEASE PREPARATIONS

- depot injections (oily, viscous, particle size)
- multilayer tablets (enteric coated)
- sustained release capsules (resins)
- infusors (with or without sensors)
- skin patches (nicotine, GTN)
- pro-drugs
- liposomes
The body is a container in which a drug is distributed by blood (different flow to different organs) - but the body is not homogeneous. Note local delivery (asthma).

- **Volume of distribution =** \(V = \frac{D}{C_0} \)
 - plasma (3.5 l); extracellular fluid (14 l); intracellular fluid (50 l); + special areas (foetus, brain)
- **note:::**
 - plasma protein binding
 - tissue sequestration

---- brings drug to target tissue and affects concentration at site of action/elimination----
DISTRIBUTION INTO BODY COMPARTMENTS

- Plasma 3.5 litres, heparin, plasma expanders
- Extracellular fluid 14 litres, tubocurarine, charged polar compounds
- Total body water 40 litres, ethanol
- Transcellular small, CSF, eye, foetus (must pass tight junctions)

Plasma protein binding; Tissue
Drug molecules are processed by enzymes evolved to cope with natural compounds.

Drug may have actions increased or decreased or changed.

Individual variation genetically determined.

May be several routes of metabolism.

May not be what terminates drug action.

May take place anywhere BUT liver is prime site.

Not constant - can be changed by other drugs; basic of many drug-drug interactions.

... metabolism is what the body does to the drug.
Mutations allowing de-toxification of natural toxic materials are advantageous and are selected.

Drugs are caught up in these established de-toxification processes.

Drugs may be converted to:
- less toxic/effective materials
- more toxic/effective materials
- materials with different type of effect or toxicity
where ever appropriate enzymes occur; plasma, kidney, lung, gut wall and

LIVER

the liver is ideally placed to intercept natural ingested toxins (bypassed by injections etc) and has a major role in
THE LIVER

- Portal venous blood
- Systemic arterial blood
- Microsomes
- Bile

Microsomes contain cytochrome P450-dependent mixed function oxidases.

Venous blood
Any structural change in a drug molecule may change its activity.

- **Phase I** - changes drugs and creates site for phase II oxidation (adds O) eg. Microsomes (P450); reduction; hydrolysis (eg. by plasma esterases) others

- **Phase II** - couples group to existing (or phase I formed) conjugation site

\[
\text{OH} \quad \text{O-SO}_3
\]
GENETIC POLYMORPHISM IN CYTOCHROME P450 DEPENDENT MIXED FUNCTION OXIDASES

CYP
FOUR families 1-4
SIX sub-families A-F
up to TWENTY isoenzymes 1-20
CYP3A4 : CYP2D6 : CYP2C9 : CYP2C19 : CYP2A6

CYP2D6*17 (Thr107Ile; Arg296Cys) Caucasian 0%
Africans 6% Asian 51% - reduced affinity for substrates
PHASE 1 reactions

- **Hydroxylation**
 \[-\text{CH}_2\text{CH}_3 \rightarrow \text{-CH}_2\text{CH}_2\text{OH}\]

- **Oxidation**
 \[-\text{CH}_2\text{OH} \rightarrow \text{-CHO} \rightarrow \text{-COOH}\]

- **N-de-alkylation**
 \[-\text{N}(\text{CH}_3)_2 \rightarrow \text{-NHCH}_3 + \text{CH}_3\text{OH}\]

- **Oxidative deamination**
 \[-\text{CH}_2\text{CHCH}_3 \rightarrow \text{-CHCOCH}_3 + \text{NH}_3\]

\[\text{NH}_2\]

PHASE 2 reactions

Conjugations with glucuronide, sulphate

.... alters activity, made less lipid soluble so excreted
CONJUGATIONS

- OH, -SH, -COOH, -CONH with glucuronic acid to give glucuronides

- OH with sulphate to give sulphates

- NH₂, -CONH₂, aminoacids, sulpha drugs with acetyl- to give acetylated derivatives

- halo, -nitrate, epoxide, sulphate with glutathione to give glutathione conjugates

All tend to be less lipid soluble and therefore better excreted (less well reabsorbed)
OTHER (NON-MICROSOMAL) REACTIONS

- Hydrolysis in plasma by esterases (suxamethonium by cholinesterase)
- Alcohol and aldehyde dehydrogenase in cytosolic fraction of liver (ethanol)
- Monoamine oxidase in mitochondria (tyramine, noradrenaline, dopamine, amines)
- Xanthene oxidase (6-mercaptopurine, uric acid production)
- Enzymes for particular drugs (tyrosine hydroxylase, dopamine decarboxylase etc)
FACTORS AFFECTING BIOTRANSFORMATION

- race (CYP2C9; warfarin (bleeding) phenytoin (ataxia) Losartan (less cleared but less activated as well); also fast and slow isoniazid acetylators, fast = 95% Inuit, 50% Brits, 13% Finns, 13% Egyptians).
- age (reduced in aged patients & children)
- sex (women slower ethanol metabolizers)
- species (phenylbutazone 3h rabbit, 6h horse, 8h monkey, 18h mouse, 36h man); biotransformation route can change
- clinical or physiological condition
- other drug administration (induction (not CYP2D6) or inhibition)
- food (charcoal grill ++CYP1A)(grapefruit juice --CYP3A)
- first-pass (pre-systemic) metabolism
INHIBITORS AND INDUCERS OF MICROSOMAL ENZYMES

- **INHIBITORS** cimetidine
 prolongs action of drugs or inhibits action of those biotransformed to active agents (pro-drugs)

- **INDUCERS** barbiturates, carbamazepine shorten action of drugs or increase effects of those biotransformed to active agents

- **BLOCKERS** acting on non-microsomal enzymes (MAOI, anticholinesterase drugs)
OVERVIEW - EXCRETION

- Urine is the main but NOT the only route.
- Glomerular filtration allows drugs <25K MW to pass into urine; reduced by plasma protein binding; only a portion of plasma is filtered.
- Tubular secretion active carrier process for cations and for anions; inhibited by probenicid.
- Passive re-absorption of lipid soluble drugs back into the body across the tubule cells.

Note effect of pH to make more of weak acid drug present in ionised form in alkaline pH therefore re-absorbed less and excreted faster; vica-versa for weak bases.
lactating women in milk
little excreted in faeces unless poor formulation or diarrhoea
volatile agents (general anaesthetics) via lungs
the entero-hepatic shunt glucuronic acid conjugates with MW >300 are increasingly excreted in bile; hydrolysis of say -OH conjugate by beta-glucuronidase in gut will restore active drug which will be reabsorbed and produce an additional effect.
Study of ADME on a quantitative basis

In man study blood, urine, faeces, expired air.

Measure urine volume & concentration of drug

\[
\text{concentration in urine} \times \text{vol per min} = \text{RENA L\text{ clearance}} = \frac{\text{plasma concentration}}{\text{CL}_{\text{R}}}
\]

If neither secreted nor reabsorbed then clearance = clearance of inulin = 120 ml/min

If completely cleared by secretion then clearance = clearance of p-hippuric acid = renal blood flow = 700 ml/min
PHARMACOKINETIC PARAMETERS

- Volume of distribution \(V = \frac{\text{DOSE}}{C_0} \)
- Plasma clearance \(\text{Cl} = K_e \cdot V \)
- Plasma half-life \(t_{1/2} \) directly from graph
 or \(t_{1/2} = \frac{0.693}{K_e} \)
- Bioavailability \(\frac{(\text{AUC})_x}{(\text{AUC})_{iv}} \)
MULTIPLE DOSING

- In a dental context some drugs are given as single doses. Many however are given as a course of therapy.
- On multiple dosing plasma concentration will rise and fall with each dose and will increase until

 \[\text{administration} = \text{elimination} \]

 ie. steady state is reached.
- At each dose the level will oscillate through a range.
- The objective is to remain within the therapeutic window, with acceptable variation at each dose and with a regimen which promotes compliance.