Thin Layer Chromatography (TLC)

Paper chromatography, Electrophoresis

III Pharm.D
Department of Pharmaceutical Analysis
SRM College of Pharmacy, Kattankulathur
[1] Preparation of plates

• slurry of adsorbent on glass plate
• spread and dries to make a film over surface
• quantity used to mix slurry depends on:
 – number and size of plates
 – thickness of layer
 – nature of adsorbent
• after activation all plates must be stored in desiccator until used
For five 20 x 20cm plates of 250µ thickness

<table>
<thead>
<tr>
<th>Adsorbent</th>
<th>Slurry</th>
<th>Drying and Activation</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Materials with binders (G)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminium oxide</td>
<td>30 g + 40 ml H₂O</td>
<td>30 mins at room temperature and then 30 mins at 110° unless otherwise directed.</td>
<td>The binder sets very fast and therefore the whole process should be carried out within 2-3 mins.</td>
</tr>
<tr>
<td>Silica gel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Materials without binders (H)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aluminium oxide</td>
<td>30 g + 80 ml H₂O</td>
<td>3 hours at room temperature and then 30 mins at 120° unless otherwise directed.</td>
<td>There is no urgency about spreading after slurry production.</td>
</tr>
<tr>
<td>Silica gel</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Spreader

• Several types available commercially
 – eg Desaga Apparatus
 • flat template tray into which glass plates fit
 – must be placed on a flat surface
 – plates are degreased by wiping clean with acetone
 • spreader with rotating chamber and gauge
 – ensure clean and chamber is free moving
 – set gauge to required thickness
 • adsorbent + liquid shaken together in closed flask
 – slurry poured into spreader and lever arm turned to invert rotating chamber
 – spreader pulled slowly across plates
 – air dried in tray and placed on a TLC rack for activation or storage
• NB Many solvents are inflammable! Not near naked flames
[2] Preparation of tanks

- **[i] Solvents**
 - only pure dry solvents used for chromatography
 - redistillation or storage over a drying agent may be needed
 - solvent mixtures should be freshly prepared for analysis
 - these occupy about 1.5 cm depth of tank
 - great care measuring and pipetting
 - if reproducible R_f values are required

- **[ii] Lining tanks**
 - Whatman No.2 chromatography paper of tank height
 - solvent is poured down sides of tank to ensure wetting of lining

- **[iii] Saturation of atmosphere**
 - ground glass lid used to seal tank
 - solvent gently swirled round inside (while holding lid)
 - repeat occasionally for a few seconds during 15 minutes
 - only slide lid back small distance to place plate in

• [i] Determination of spot size
 • spots of various sizes applied to an “end plate” for TLC
 – (or filter paper for paper chromatography)
 • spots by spraying and visualised
 • suitable size selected
 – spots increase in size during chromatogram development
 – hence less colour intensity
 – mixture may be present in unknown solutions
 – overloading leads to streaking
 – trace impurities overlooked if insufficient applied
 – usually 1% solution of reference materials is used
 – 10μl (one spot from 0.5cm diameter capillary) is sufficient
 – (3-4 spots should be applied for paper chromatography)
• [ii] Application
 • remove narrow strip of coating 0.5cm wide from vertical margins of plate
 • measure 3cm from bottom of plate
 • make a small mark 2mm long on the coating of each side of the plate = baseline
 • measure 15cms and make 2 small marks at new height = solvent front
 • place prepared plate on piece of clean drawing paper
 • spot reference solutions each from clean capillary to baseline 1.5cm apart and 2cm from edge
 • spots in centre should be unknown solution
 • or mixture of reference solutions and unknown mixture
 • on paper at the bottom of plate mark off and label positions of spots across plate
 • also mark baseline and solvent line
Application of Spots to a TLC plate

Solv. front

Baseline
[4] Sprays and spraying

- **Sprays**

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Heating treatment</th>
<th>Viewed</th>
<th>Solutes used for</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dragendorff's reagent</td>
<td>-</td>
<td>Daylight</td>
<td>Alkaloids</td>
</tr>
<tr>
<td>5% vanillin in H_2SO_4</td>
<td>-</td>
<td>Daylight</td>
<td>Terpenes</td>
</tr>
<tr>
<td>60% aqueous sulphuric acid</td>
<td>Heat 120° 10-15 minutes</td>
<td>Daylight and UV</td>
<td>General spray particularly steroids</td>
</tr>
<tr>
<td>Antimony trichloride 10% in benzene</td>
<td>Heat 120° 10 minutes</td>
<td>Daylight and UV</td>
<td>Steroids</td>
</tr>
<tr>
<td>Phosphomolybdic acid 10% in 95% ethanol in water</td>
<td>Heat 110° 5 minutes</td>
<td>Daylight</td>
<td>General spray for unsaturated and oxy-compounds</td>
</tr>
<tr>
<td>Aniline hydrogen phthalate</td>
<td>Heat 105° 10 minutes</td>
<td>Daylight and UV</td>
<td>Sugars</td>
</tr>
<tr>
<td>Ninhydrin reagent</td>
<td>Heat 10° until colour develops</td>
<td>Daylight</td>
<td>Amino acids</td>
</tr>
</tbody>
</table>
• [ii] Spraying
 • eg Shandon spray packs + compressed gas cylinders
 • great care – many sprays
 – toxic (antimony chloride)
 – corrosive (strong acids)
 • use fume cupboard
 – extraction fan working properly
 – sliding window below chest level (only room for forearms)
 • after spraying close window and leave a few seconds
 • hold plate corner/edge with tissue paper
 • may be necessary to heat sprayed plate for visualisation

• [i] Making permanent record
 • most sprays produce coloured spots
 • check for extra spots under UV light
 – mark with needle point
 • trace all plates with pencil
 – use tracing paper same size as plate
 – allow heated plates time to cool
 • transfer data to paper record
 • each drawing should be labelled with
 – coating substance and activation period
 – thickness of layer
 – solvents used
 – spray used
• mark the colour and D or U beside each spot
 D = daylight observation
 U = UV observation

• file record in results section
R_f values

• qualitative results of TLC
 – expressed as fractions of 1.0
 – can be expressed from Rf values (eg Rf x 100)
 – no more than two decimal places
 • due to inaccuracy of physical measurement

• may not be reproducible
 • only give an indication of possible nature of unknown
 • complete identification only obtained if spot is eluted and micro-scale physical measurements done (MS, UV, IR)

• standard references should always be used on same plate for comparison
 • most sprays produce differential colours of fluorescence
 • colour test provides extra evidence with distance migration
\[R_f = \frac{\text{Distance from centre of solute spot (cm) to the baseline}}{\text{Distance from solvent front to baseline (cm)}} \]

- \(R_x \) value
 - migration of solute with internal standard
 - attempt to overcome variability in \(R_f \) values
 - internal standard is a solute added to the mixture
 - has similar chemical nature
 - \(R_f \) value in middle range of unknown compounds

\[R_x = \frac{\text{Distance from the centre of unknown spot to baseline}}{\text{Distance from the centre of standard spot to the baseline}} \]

- hoped ratio would eliminate variations due to differences in conditions between analyses
Paper chromatography

[1] Preparation of paper
 - cut to 35cm x 43cm
 - pre-treatment may be necessary

[2] Preparation of tanks
 - large round tanks used
 - 150ml solvent to give 1.5cm depth
 - tanks not lined but atmosphere must still be pre-saturated
 • running solvent
 • snug fitting lid
- quantity to be applied determined as for TLC
- baseline drawn in lead pencil approx 1” from long side
- spots
 - applied 5cm apart and from edge
 - as small as possible (each allowed to dry before next applied)

[4] Running the paper
- shorter sides stapled to make a cylinder (3mm gap)
- stood in tank to elute
- solvent front marked after elution
- stood upside down in fume cupboard to dry
- further treatment may be necessary
Electrophoresis

• Principle
 – charged ion group will migrate towards one of the electrodes when placed in an electric field

• Practice
 – mixture placed in a narrow band or zone at a suitable distance from each electrode
 – various components draw away from one another at different rates in different directions
 – to fix substances at positions a stabilising medium is needed (paper) to hold solution for electric field
 – dried on termination of run
 – (solutions will also separate)
• Migration velocities (M)
 – of a substance is defined as distance travelled from the origin per second at a field strength of 1 volt/cm (constant voltage)
 – is a very small term
 – \(M = \frac{\text{cm}^2}{\text{volt sec}} \)
 – eg If an amino acid migrates roughly 12cm in 45 mins when a potential of 500 volt is applied across a paper strip 32cm long...
 \[
 M = \frac{12}{45 \times 60} \times \frac{32}{500} = 2.5 \times 10^{-4} \text{ cm}^2/\text{volt sec}.
 \]

• Relative mobilities
 – calculated by reference to migration of a fast component
 • ornithine is a convenient reference standard at < pH7
 • aspartate used above pH7
 – at low voltage rel mob fairly constant for a given buffer
• Methods

• Setting up paper
 – 20 x 32cm sheets of paper cut from larger Whatman No.1
 » (longer side cut in direction of flow of paper)
 – 32cm sides bisected with a pencil line and origins marked
 – 1μl volumes of standards are applied
 » 4cm from edge and 2cm apart
 » dried in warm air stream
 – spot kept as small as possible
 – wear gloves
 » avoids making papers with ninhydrin-positive substances from hand perspiration
 – paper is wetted with appropriate buffer solution up to origin
 » then blotted between filter papers to remove excess
 » and placed carefully in tank
• switch on power supply, allow few seconds to stabilise

• switch off when run is complete

• carefully remove paper from tank

• dry at 110°, spray evenly with ninhydryin reagent, heat at 110° to get maximum colour