Antifungal Drugs

D. Kumaraswamy
Department of pharmacology
SRM MCH&RC
Fungal Infections (mycoses)

- Superficial
- Deep/systemic
Fungal infections (Superficial)

- Dermatomycosis (bcc cup)
 - Tinea pedis (athlete’s foot)
 - Tinea corporis (skin ringworm)
 - Tinea cruris (groin)
 - Tinea capitis (scalp)
 - Tinea unguium (nails)
 - Tinea barbae (beard)
 - Tinea mannum (hand)
- Candidiasis – skin, mouth, vagina oropharynx
Fungal Infection

Fungal Infection
1. ANTIBIOTICS
 Amphotericin B, (AMB), Nystatin, Hamcyin, Natamycin
 Griseofulvin

2. ANTIMETABOLITES:
 5-Fluorocytosine (5-FC)
 inhibition of nucleic acid synthesis
3. AZOLES
 - Imidazoles: (Topical): Clotrimazole, Econazole, Miconazole, Oxiconazole
 (Systemic): Ketoconazole
 - Trizoles: (Systemic) Itraconazole, Fluconazole, Voriconazole

 Inhibition of ergosterol synthesis

4. ALLYLAMINE: Terbinafine

 Inhibition of lanosterol and ergosterol synthesis

5. OTHER TOPICAL AGENTS:
 Tolnaftate, Undecylenic acid, Benzoic acid, Quiniodochlor, Ciclopirox olamine, Sod. thiosulfate.
Amphotericin B - MOA

- **In fungi:** ergosterol in membranes: higher affinity than mammalian cholesterol for AmB

- **Ergosterol:** Only present in fungal cell membrane and not in animal cell

- **Ergosterol: Polyenes** combine with it, get inserted into the membrane and several molecules together orient themselves and form a **micropore.**
The Fungal Cell Wall

- Mannoproteins
- β1,6 glucans
- β1,3 glucans
- Cell membrane
- β1,3 glucan synthase
- Chitin
- Ergosterol
Amphotericin B

Fungal cell

K⁺ and other small molecules
Antifungal Spectrum

- Candida albicans, Histoplasma capsulatum, Cryptococcus neoformans, Blastomyces dermatitidis, Coccidioides immitis, Aspergillus, Rhodotorula.
- Resistance is rare and slow to develop
- **Pharmacokinetics**
 - Poorly: crosses cell membranes, absorbed from the gut and penetration into the eye, CSF, and joint capsules
 - **Kidney > liver > spleen > lung > heart > skeletal muscle > brain > bone > CSF > eye**
- For treatment of meningitis, it must be given intrathecally
 - Given only via IV injection or intrathecally Selective distribution into deep tissue sites, with slow release of drug
Classic amphotericin B deoxycholate (Fungizone™) formulation: serious toxic side effects.

Less toxic preparations:

1) Liposomal amphotericin B
2) Amphotericin B colloidal dispersion
3) Amphotericin B lipid complex

- milder acute reaction
- better tolerated
- lower nephrotoxicity
- minimal anaemia
- targeted delivery-liver & Spleen
ADVERSE EFFECTS (AMB)

- **Acute: Infusion-related**
 - Chills, fever, dyspnea, nausea, vomiting, bronchospasm, hypotension, convulsions
- **Chronic**
 - Nephrotoxicity
 - Impaired concentration, impaired urinary acidification, K & Mg wasting with hypokalemia and hypomagnesemia
- Normochromic, normocytic anemia
- (↓ erythropoietin)
Drug interactions

- **FLUCYTOSINE**
 - Synergism
 - AMPHOTERICIN B

- **KETOCONAZOLE**
 - Contraindicated
 - AMPHOTERICIN B
Griseofulvin

- Fungistatic
- A systemic antifungal used to treat topical ringworm infections, e.g., onychomycosis, Tinea capitis, Tinea pedis, etc.
- many *Trichophyton* spp., *Microsporum* spp. and *Epidermophyton* spp. are susceptible
- Dermatophyte infections
- Oral absorption (better with small particle size)
- Enzyme inducer
Mode of Action - Griseofulvin

- disrupts mitotic spindle during metaphase by interacting with fungal microtubules------ (-) fungal mitosis (metaphase arrest)
- sufficient to inhibit growth of fungi (drug is static), preventing them from invading.
Griseofulvin – Mechanism of Action
Griseofulvin-Adverse actions

- GI disturbances
- Allergic reactions
- Skin rash
- Headache
- Photosensitivity
- Angioedema
- Peripheral neuritis
Griseofulvin-Adverse effects (CNS)

- Lethargy
- Mental confusion
- Blurring of vision
- Vertigo
- Being an antimiotic--bone marrow suppression, leucopenia, neutopenia
Griseofulvin - Uses

Dermatophytosis
2. ANTIMETABOLITES:
5-Flucytosine (5-FC)

- Flucytosine is converted into 5-flurouracil, which inhibits thymidylate synthetase leading to inhibition of DNA synthesis (antimetabolite action)
- All susceptible fungi are capable of deaminating flucytosine to 5-flurouracil
3. AZOLES

- Better CSF penetrability
- High volume of distribution
- Dermatophytes, candida and other deep mycoses
- Triazoles are greater efficacy/lesser side effect and drug interaction
Mechanism of Action:

Acetyl CoA → Squalene → Squalene-2,3 oxide → Lanosterol → Ergosterol → 14-α demethylase → Azoles
Adverse effects of fluconazole include:

- Nausea
- Vomiting
- GI upset
- Hepatotoxicity
- Exfoliative skin rash
Caution:

As these are embryotoxic, they should be avoided in pregnancy.
Effect of azoles on *C. albicans*

Before exposure
After exposure
Ketoconazole

- Spectrum: yeasts and moulds - poor absorption limits its role for severe infections, generally used in mucosal infections only
- Pharmacokinetics
 - Variable oral absorption, dependent on pH (often given with cola or fruit juice)
 - $T_{1/2}$ 7-10 hours
 - Protein binding > 99%
 - Hepatic, bile and kidney elimination
 - H_2 blockers, antacids--- decrease absorption
Adverse effects of Ketoconazole include:

- Hepatotoxicity, which increases liver enzymes (rarely may develop progressive hepatotoxicity, which can be fatal).
- Gynecomastia, loss of libido and oligozoospermia in men (the drug may inhibit androgenic hormones).
- Menstrual abnormalities, which may occur in some women.
- Salt and water retention.

- Hepatotoxicity (2-8%) - increase in transaminases, hepatitis
- Dose related inhibition of CYP P450 - responsible for testosterone synthesis
- Dose-related inhibition of CYP P450 - responsible for adrenal cortisol synthesis
4. ALLYLAMINE: Terbinafine

- It causes non-competitive inhibition of squalene epoxide enzyme, which is involved in the synthesis of ergosterol by fungi.

Squalene-2-3- epoxidase

Acetyl CoA

Farnesyl Pyrophosphate

Erg9

Squalene

Erg1

Squalene Epoxide

Erg7

Lanosterol

Erg11

4,4-dimethylcholesta-8,14,24-trienol

Erg24

4,4-dimethylzymosterol

Erg25
Erg26
Erg27
Erg5

Fecosterol

Erg2

Episterol

Erg3

Ergosta-5,7,24(28)-trienol

Erg5
Erg4

Ergosterol

Allylamines (terbinafine)
Mechanism of Action:

1. Acetyl CoA → Squalene
2. Squalene → Squalene-2,3 oxide
3. Squalene-2,3 oxide → Lanosterol
4. Lanosterol → Ergosterol
5. Ergosterol → Allylamines

Key enzymes:
- Squalene-2,3 epoxidase
- 14-α demethylase
4. ALLYLAMINE: Terbinafine

- A highly lipophilic, keratinophilic
- Effective orally against dermatophytes and candida
- Useful in fungal infections of nails (6-12 weeks)
- Adverse effects: gastric upset, rashes and taste disturbances
- Rarely hepatotoxicity
5. OTHER TOPICAL AGENTS:

- White field’s ointment = Benzoic acid (6%) + Salicylic acid (3%)
- Tolnaftate: Tinea corporis, cruris
- Ciclopirox: Dermatophytes, candida Malassezia furfur
- Selenium Sulfide: Malassezia furfur
- Haloprogin: Dermatophytes, candida
SITES OF ACTION OF ANTIFUNGAL DRUGS

1a. ALLYLAMINES
 block ergosterol formation in cell membrane via inhibition of squalene epoxidase

1b. GRISEOFULVIN
 blocks intracellular microtubules

2. FLUCYTOSINE - active
 uptake via permease
 blocks DNA/RNA synthesis

3. AZOLES
 block ergosterol formation in cell membrane via inhibition of cytochrome P450 dependent
 14α-demethylase

4. POLYENES
 bind to and disrupt cell membranes
What are the targets for antifungal therapy?

Cell membrane
Fungi use principally ergosterol instead of cholesterol

DNA Synthesis
Some compounds may be selectively activated by fungi, arresting DNA synthesis.

Cell Wall
Unlike mammalian cells, fungi have a cell wall

Introduction to Medical Mycology. Merck and Co. 2001
Cell Membrane Active Antifungals

- **Polyene antibiotics**
 - Amphotericin B, lipid formulations
 - Nystatin (topical)

- **Azole antifungals**
 - Ketoconazole
 - Itraconazole
 - Fluconazole
 - Voriconazole
 - Miconazole, clotrimazole (and other topicals)