M.Tech. - FULL TIME

CLOUD COMPUTING

CURRICULUM & SYLLABUS

2013 - 2014

DEPARTMENT OF INFORMATION TECHNOLOGY
FACULTY OF ENGINEERING AND TECHNOLOGY
SRM UNIVERSITY
SRM NAGAR, KATTANKULATHUR – 603 203
SRM UNIVERSITY
DEPARTMENT OF INFORMATION TECHNOLOGY
M.Tech in CLOUD COMPUTING

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>I and II Semester</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC2001</td>
<td>Web Application Development</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>CC2002</td>
<td>Cloud Architectures</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>CC2003</td>
<td>Cloud Storage Infrastructures</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>CC2004</td>
<td>Data Center Networking</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>CC2005</td>
<td>Cloud Security</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>CC2006</td>
<td>Managing Virtual Environments</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>III Semester</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC2047</td>
<td>Seminar</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>CC2049</td>
<td>Project Phase-I</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>IV Semester</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC2050</td>
<td>Project Phase-II</td>
<td>0</td>
<td>0</td>
<td>32</td>
<td>16</td>
</tr>
<tr>
<td>Supportive Course:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CC2011</td>
<td>Data Analysis using Multivariate Techniques and Forecasting Methods</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Inter Disciplinary Elective</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>One course to be taken in Semester I or II or III</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Program Electives</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 courses of 3 credits each to be taken in Semesters I -III</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL CREDITS 71

Total Number of credits to be earned for M.TECH degree: 71

CONTACT HOUR/CREDIT:
L: Lecture Hours per week T: Tutorial Hours per week
P: Practical Hours per week C: Credit
PROGRAM ELECTIVES

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>CC2101</td>
<td>Design & Development of Cloud Applications</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CC2102</td>
<td>Application Development Frameworks</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CC2103</td>
<td>Scripting for System Administrators</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CC2104</td>
<td>Data Warehousing and Mining</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CC2105</td>
<td>Converged Networks</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CC2106</td>
<td>Network Security</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CC2107</td>
<td>Enterprise Storage Systems</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CC2108</td>
<td>Object Oriented Software Engineering</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CC2109</td>
<td>Data Center Virtualization</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CC2110</td>
<td>Cloud Application Development</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>CC2111</td>
<td>Cloud Strategy Planning & Management</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>CC2112</td>
<td>Data Science & Big Data Analytics</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

NOTE:
Students have to register for the courses as per the following guidelines:

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Category</th>
<th>I Semester</th>
<th>II Semester</th>
<th>III Semester</th>
<th>IV Semester</th>
<th>Category total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Core courses</td>
<td>12 (3 courses)</td>
<td>12 (3 courses)</td>
<td>---</td>
<td>---</td>
<td>24</td>
</tr>
<tr>
<td>2.</td>
<td>Program Elective courses</td>
<td>18 (in I to III semesters)</td>
<td>---</td>
<td>---</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Interdisciplinary elective courses</td>
<td>3 (One course to be taken in Semester I or II or III)</td>
<td>---</td>
<td>---</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Supportive courses - mandatory</td>
<td>3 (One course to be taken in Semester I or II or III)</td>
<td>---</td>
<td>---</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Seminar</td>
<td>---</td>
<td>---</td>
<td>1</td>
<td>---</td>
<td>1</td>
</tr>
<tr>
<td>6.</td>
<td>Project work</td>
<td>---</td>
<td>---</td>
<td>06</td>
<td>16</td>
<td>22</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>71</td>
</tr>
</tbody>
</table>

2 M.Tech (Cloud Computing)-2013
PURPOSE
Internet is part and parcel of everybody’s life today. Programming in web is every essential for any IT professional. The subject provides knowledge to learn and implement the various web programming technologies of current trend today.

INSTRUCTIONAL OBJECTIVES
1. Understand the current technologies in Internet world
2. Implement client side programming using java script, CSS
3. Learn and implement advanced and current technologies like AJAX, JQuery
4. Understand the socket programming in Java
5. Learn and implement java server side programming
6. Learn and implement web services
7. Learn various web development frameworks

UNIT I - INTRODUCTION TO INTERNET WEB TECHNOLOGIES (12 hours)

UNIT II - ADVANCED DYNAMIC WEB CLIENT SIDE PROGRAMMING: (9 HOURS)
AJAX-xmlHttpRequest object-AJAX applications-AJAX frame work -java script libraries -JQuery-basics —animation-overview on Yahoo UI, Google web toolkit libraries-Applets-overview on javaFX applets.

UNIT III - JAVA NETWORK PROGRAMMING (6 hours)
Java I/O streaming-files-lookup Internet address-socket programming-UDP sockets-Multicast sockets-client/server programs-secure sockets-javaMail API

UNIT IV - DYNAMIC WEB SERVER SIDE PROGRAMMING (9 hours)
Web servers and java web containers-servlets -lifecycle-content handling-cookies-session tracking-filters-Java server pages-expressions-and declarations-directives-JSP and java beans-include and forward directives-custom tag libraries-JSTL-new features in servlet3.1 and JSP2.5
UNIT V - ADVANCED SERVER SIDE PROGRAMMING (9 hours)

Web services—SOAP protocol—UDDI—WSDL—creating publishing and describing web services—JDBC database connectivity—drivers—connections—rowset interface—prepared statements—three tier applications; Web application frameworks—MVC (model view controller) frame work—struts—JSF (Java server faces)—Java EE design pattern an overview.

PRACTICAL (30 hours)

REFERENCES

CC2002

<table>
<thead>
<tr>
<th>CLOUD ARCHITECTURES</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Contact Hours - 75</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Pre-requisites</td>
<td>Nil</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PURPOSE

This module gives students the skills and knowledge to understand how Cloud Computing Architecture can enable transformation, business development and agility in an organization.

INSTRUCTIONAL OBJECTIVES

1. Analyze the components of cloud computing showing how business agility in an organization can be created
2. Evaluate the deployment of web services from cloud architecture
3. Critique the consistency of services deployed from a cloud architecture
4. Compare and contrast the economic benefits delivered by various cloud models based on application requirements, economic constraints and business requirements.
Critically analyze case studies to derive the best practice model to apply when developing and deploying cloud based applications

UNIT I - CLOUD COMPUTING FUNDAMENTALS (8 hours)
Cloud Computing definition, private, public and hybrid cloud. Cloud types; IaaS, PaaS, SaaS. Benefits and challenges of cloud computing, public vs private clouds, role of virtualization in enabling the cloud; Business Agility: Benefits and challenges to Cloud architecture. Application availability, performance, security and disaster recovery; next generation Cloud Applications.

UNIT II - CLOUD APPLICATIONS (6 hours)
Technologies and the processes required when deploying web services; Deploying a web service from inside and outside a cloud architecture, advantages and disadvantages.

UNIT III - MANAGEMENT OF CLOUD SERVICES (12 hours)
Reliability, availability and security of services deployed from the cloud. Performance and scalability of services, tools and technologies used to manage cloud services deployment; Cloud Economics: Cloud Computing infrastructures available for implementing cloud based services. Economics of choosing a Cloud platform for an organization, based on application requirements, economic constraints and business needs (e.g. Amazon, Microsoft and Google, Salesforce.com, Ubuntu and Redhat).

UNIT IV - APPLICATION DEVELOPMENT (10 hours)
Service creation environments to develop cloud based applications. Development environments for service development; Amazon, Azure, Google App.

UNIT V - CLOUD IT MODEL (9 hours)
Analysis of Case Studies when deciding to adopt cloud computing architecture. How to decide if the cloud is right for your requirements. Cloud based service, applications and development platform deployment so as to improve the total cost of ownership (TCO).

PRACTICAL (30 hours)
REFERENCES

<table>
<thead>
<tr>
<th>CC2003</th>
<th>CLOUD STORAGE INFRASTRUCTURES</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Contact Hours - 75</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Pre-requisites</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PURPOSE
This course provides a comprehensive view of storage and networking infrastructures for highly virtualized cloud ready deployments. The course discusses the concepts and features related to Virtualized datacenter and cloud, Information storage security and design, storage network design and cloud optimized storage.

INSTRUCTIONAL OBJECTIVES
1. Critically appraise the opportunities and challenges of information management in complex business environments
2. Evaluate information storage management design in a cloud environment and how it relates to the business objectives of an organization
3. Analyze the role technology plays in the design of a storage solution in a cloud architecture
4. Investigate how a global storage solution can be optimized so that it can be delivered successfully from the cloud
5. Analyze how best to provide reliable access to information both locally and remotely using storage technologies

UNIT I - VIRTUALIZED DATA CENTER ARCHITECTURE (9 hours)
Cloud infrastructures; public, private, hybrid. Service provider interfaces; Saas, Paas, Iaas. VDC environments; concept, planning and design, business continuity and disaster recovery principles. Managing VDC and cloud environments and infrastructures.
UNIT II - INFORMATION STORAGE SECURITY & DESIGN (9 hours)
Storage strategy and governance; security and regulations. Designing secure solutions; the considerations and implementations involved. Securing storage in virtualized and cloud environments. Monitoring and management; security auditing and SIEM.

UNIT III - STORAGE NETWORK DESIGN (12 hours)
Architecture of storage, analysis and planning. Storage network design considerations; NAS and FC SANs, hybrid storage networking technologies (iSCSI, FCIP, FCoE), design for storage virtualization in cloud computing, host system design considerations.

UNIT IV - OPTIMIZATION OF CLOUD STORAGE (6 hours)
Global storage management locations, scalability, operational efficiency. Global storage distribution; terabytes to petabytes and greater. Policy based information management; metadata attitudes; file systems or object storage.

UNIT V - INFORMATION AVAILABILITY DESIGN (9 hours)
Designing backup/recovery solutions to guarantee data availability in a virtualized environment. Design a replication solution, local remote and advanced. Investigate Replication in NAS and SAN environments. Data archiving solutions; analyzing compliance and archiving design considerations.

PRACTICAL (30 hours)

REFERENCES
CC2004	DATA CENTER NETWORKING	L	T	P	C
Total Contact Hours - 75 | 3 | 0 | 2 | 4
Pre-requisites | Nil

PURPOSE
This course provides an insight to the students on design guidance, configuration examples and best practices with respect to data center networking. This course also deals with current data center architectures, new technologies adopted to create modern data center architecture, and merits and demerits of the same. This course examines these new technologies and demonstrates how consolidation can be realized using a unified network approach.

INSTRUCTIONAL OBJECTIVES
1. Critically discuss data centre networking technologies and protocols
2. Evaluate key concepts in modern Layer 2 & Layer 3 data centre networks
3. Research a topic related to networking technologies in modern data centers
4. Design, build and configure complex routed and switched networks
5. Justify the implementation of networking solutions in a virtualized environment

UNIT I - EVOLUTION OF DATA CENTRE DESIGN (6 hours)
Design for flexibility, scalability, environmental control, electrical power, flooring, fire protection, security, network infrastructure. Energy use and greenhouse gas emissions. Requirements for modern data centers, high availability and Service Orientated Infrastructures (SOI). Modern data centre use case studies.

UNIT II - DATA CENTRE ARCHITECTURES (7 hours)
Network connectivity optimization evolution: Top of rack (TOR), end of rack (EOR), scale up vs scale up, solutions that reduce power and cabling. Data Centre standards; TIA/EIA-942. Structured cabling standards, fibre and copper cabling characteristics, cable management, bandwidth requirements, I/O connectivity.

UNIT III - SERVER ARCHITECTURES (8 hours)
UNIT IV - LAYER 2 NETWORKS
(12 hours)
Ethernet; IEEE 802.3ba; 40 Gbps and 100 Gbps Ethernet. IEEE 802.1D Spanning Tree Protocol (STP), RSTP, PVST, MSTP. TRILL (Transparent Interconnection of Lots of Links), R Bridges, IEEE 802.1Qbg Edge Virtual Bridging, 802.1Qbh Bridge Port Extension. Fibre Channel over Ethernet (FCoE) vs Internet Small Computer System Interface (iSCSI). Data Center Bridging (DCB); priority-based flow control, congestion notification, enhanced transmission selection, Data Center Bridging Exchange (DCBX). Layer 2 Multicasting; Case studies.

UNIT V - LAYER 3 AND BEYOND
(12 hours)

PRACTICAL
(30 hours)

REFERENCES
PURPOSE
The course on cloud security introduces the basic concepts of security systems and cryptographic protocols, which are widely used in the design of cloud security. The issues related multi tenancy operation, virtualized infrastructure security and methods to improve virtualization security are also dealt with in this course.

INSTRUCTIONAL OBJECTIVES
1. Compare modern security concepts as they are applied to cloud computing
2. Assess the security of virtual systems
3. Evaluate the security issues related to multi-tenancy
4. Appraise compliance issues that arise from cloud computing

UNIT I - SECURITY CONCEPTS (10 hours)
Confidentiality, privacy, integrity, authentication, non-repudiation, availability, access control, defence in depth, least privilege, how these concepts apply in the cloud, what these concepts mean and their importance in PaaS, IaaS and SaaS. e.g. User authentication in the cloud; Cryptographic Systems- Symmetric cryptography, stream ciphers, block ciphers, modes of operation, public-key cryptography, hashing, digital signatures, public-key infrastructures, key management, X.509 certificates, OpenSSL.

UNIT II - MULTI-TENANCY ISSUES (9 hours)
Isolation of users/VMs from each other. How the cloud provider can provide this; Virtualization System Security Issues- e.g. ESX and ESXi Security, ESX file system security, storage considerations, backup and recovery; Virtualization System Vulnerabilities- Management console vulnerabilities, management server vulnerabilities, administrative VM vulnerabilities, guest VM vulnerabilities, hypervisor vulnerabilities, hypervisor escape vulnerabilities, configuration issues, malware (botnets etc).
UNIT III - VIRTUALIZATION SYSTEM-SPECIFIC ATTACKS (7 hours)
Guest hopping, attacks on the VM (delete the VM, attack on the control of the VM, code or file injection into the virtualized file structure), VM migration attack, hyperjacking.

UNIT IV - TECHNOLOGIES FOR VIRTUALIZATION-BASED SECURITY ENHANCEMENT (9 hours)
IBM security virtual server protection, virtualization-based sandboxing; Storage Security- HIDPS, log management, Data Loss Prevention. Location of the Perimeter.

UNIT V - LEGAL AND COMPLIANCE ISSUES (10 hours)
Responsibility, ownership of data, right to penetration test, local law where data is held, examination of modern Security Standards (eg PCIDSS), how standards deal with cloud services and virtualization, compliance for the cloud provider vs. compliance for the customer.

PRACTICAL (30 hours)

REFERENCES

<table>
<thead>
<tr>
<th>CC2006</th>
<th>MANAGING VIRTUAL ENVIRONMENTS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Contact Hours - 75</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Pre-requisite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PURPOSE

This course deals with management of complex virtual environments, analysis of key performance factors of virtualized systems, principal issues in troubleshooting virtual environments, evaluation of small scale virtual environment developed in the lab. This course will equip students with the in-depth knowledge and techniques used to efficiently optimize and effectively troubleshoot virtual infrastructures.

INSTRUCTIONAL OBJECTIVES

1. Discuss and evaluate the management of complex virtual environments.
2. Critically analyze key performance factors in virtualized systems.
3. Identify and formulate judgements for management requirements relating to the configuration and performance of virtual environments.
4. Identify and analyze the principal issues in troubleshooting virtual environments.
5. Performance evaluations and critical evaluations of a small scale virtual environment developed in the lab.

UNIT I - PERFORMANCE MANAGEMENT IN A VIRTUAL ENVIRONMENT
(9 hours)

Management techniques, methodology and key performance metrics used to identifying CPU, memory, network, virtual machine and application performance bottlenecks in a virtualized environment.

UNIT II - CONFIGURATION AND CHANGE MANAGEMENT
(7 hours)

Configuration and change management goals and guidelines, tools and technologies in virtualized environments.

12 M.Tech (Cloud Computing)-2013
UNIT III - SECURE VIRTUAL NETWORKING (9 hours)
Configuration and change management goals and guidelines, tools and technologies in virtualized environments; Virtual network security architecture, network segmentation and traffic isolation to secure a virtual network configuration.

UNIT IV - PROTECTING THE MANAGEMENT ENVIRONMENT (10 hours)
Server authentication, authorization, and accounting, SSL certificates, server hardening; Protecting the host system: security architecture, controlling access to storage, hardening hosts, Hardening virtual machines; Virtual machine security architecture, security parameters; Protecting the host and virtual machine systems using server authentication, authorization, and accounting techniques.

UNIT V - TROUBLESHOOTING VIRTUAL ENVIRONMENTS (10 hours)
Interpreting host, network, storage, cluster and virtual machine log files. Network troubleshooting, traffic sniffing, storage access problems, iSCSI authentication and digests. Virtual machine migration, cluster errors with shares, pools, and limits; Command line interfaces and syntax, interpreting host, network, storage, cluster, virtual machine log files and network traces.

PRACTICAL (30 hours)

REFERENCES
4. LatifaBoursas (Editor), Mark Carlson (Editor), Wolfgang Hommel (Editor), Michelle Sibilla (Editor), KesWold (Editor), “Systems and Virtualization Management: Standards and New Technologies” [ISBN: 978-3540887072], October 14, 2008
Seminar is one of the important components for the engineering graduates to exhibit and expose their knowledge in their field of interest. It also gives a platform for the students to innovate and express their ideas in front of future engineering graduates and professionals.

Instructional Objectives

1. To make a student study and present a seminar on a topic of current relevance in Information Technology or related fields.
2. Enhancing the debating capability of the student while presenting a seminar on a technical topic.
3. Training a student to face the audience and freely express and present his ideas without any fear and nervousness, thus creating self-confidence and courage which are essentially needed for an Engineer.

Guidelines:

1. Each student is expected to give a seminar on a topic of current relevance in IT/Related field with in a semester.
2. Students have to refer published papers from standard journals.
3. The seminar report must not be the reproduction of the original papers but it can be used as reference.

Assessment:

The students are expected to give at least two presentations on their topics of interest which will be assessed by a committee constituted for this purpose. This course is mandatory and a student has to pass the course to become eligible for the award of degree. Marks will be awarded out of 100 and appropriate grades assigned as per the regulations.

Semester III

<table>
<thead>
<tr>
<th>CC2047</th>
<th>SEMINAR</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Purpose

To undertake research in an area related to the program of study.
INSTRUCTIONAL OBJECTIVE

The student shall be capable of identifying a problem related to the program of study and carry out wholesome research on it leading to findings which will facilitate development of a new/improved product, process for the benefit of the society.

M.Tech projects should be socially relevant and research oriented ones. Each student is expected to do an individual project. The project work is carried out in two phases – Phase I in III semester and Phase II in IV semester. Phase II of the project work shall be in continuation of Phase I only. At the completion of a project the student will submit a project report, which will be evaluated (end semester assessment) by duly appointed examiner(s). This evaluation will be based on the project report and a viva voce examination on the project. The method of assessment for both Phase I and Phase II is shown in the following table:

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Tool</th>
<th>Weightage</th>
</tr>
</thead>
<tbody>
<tr>
<td>In- semester</td>
<td>I review</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>II review</td>
<td>15%</td>
</tr>
<tr>
<td></td>
<td>III review</td>
<td>35%</td>
</tr>
<tr>
<td>End semester</td>
<td>Final viva voce examination</td>
<td>40%</td>
</tr>
</tbody>
</table>

Student will be allowed to appear in the final viva voce examination only if he / she has submitted his / her project work in the form of paper for presentation / publication in a conference / journal and produced the proof of acknowledgement of receipt of paper from the organizers / publishers.

SUPPORTIVE COURSE

CC2011 DATA ANALYSIS USING MULTIVARIATE TECHNIQUES AND FORECASTING METHODS

<table>
<thead>
<tr>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Contact Hours - 45

Prerequisite

Nil

PURPOSE

The purpose of this course is to introduce the students into the field of Multivariate Techniques and Forecasting Methods for analyzing large volumes of data and to take decisions based on inference drawn.
<table>
<thead>
<tr>
<th>INSTRUCTIONAL OBJECTIVES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Data characteristics and form of Distribution of the Data Structures</td>
</tr>
<tr>
<td>2. Understanding the usage of multivariate techniques and forecasting methods</td>
</tr>
<tr>
<td>for the problem under the consideration</td>
</tr>
<tr>
<td>3. For drawing valid inferences and to plan for future investigations</td>
</tr>
</tbody>
</table>

UNIT I - MULTIVARIATE ANALYSIS (5 hours)
Meaning of Multivariate Analysis, Measurements Scales: Metric measurement scales and Non-metric measurement scales, Classification of multivariate techniques (Dependence Techniques and Inter-dependence Techniques), Applications of Multivariate Techniques in different disciplines.

UNIT II - FACTOR ANALYSIS (10 hours)
Meanings, Objectives and Assumptions, Designing a factor analysis, Deriving factors and assessing overall factors, Interpreting the factors and validation of factor analysis.

UNIT III - CLUSTER ANALYSIS (10 hours)
Objectives and Assumptions, Research design in cluster analysis, Deriving clusters and assessing overall fit (Hierarchical methods, Non Hierarchical Methods and Combinations), Interpretation of clusters and validation of profiling of the clusters.

UNIT IV - FORECASTING TECHNIQUES (10 hours)

UNIT V - TIME SERIES ANALYSIS (10 hours)
Box-Jenkins Methodology for ARIMA models: Examining correlation and stationarity of time series data, ARIMA models for time series data (An Auto-regressive model of order one and a Moving Average Model of order one).

REFERENCES

<table>
<thead>
<tr>
<th>INTERDISCIPLINARY ELECTIVE</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Contact Hours - 45</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Students to choose one Elective course from the list of Post Graduate courses specified under the Faculty of Engineering and Technology other than courses under M.Tech (Cloud Computing) curriculum either in I, II or III semester

PROGRAM ELECTIVES

<table>
<thead>
<tr>
<th>CC2101</th>
<th>DESIGN & DEVELOPMENT OF CLOUD APPLICATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Pre-requisite
Web Application Development

PURPOSE
This module is focused on developing web and mobile applications in the cloud. By the end of this module the student will have a detailed overview of the design and development process involved in creating a cloud based application.

INSTRUCTIONAL OBJECTIVES
1. Design and develop elegant and flexible cloud software solutions.
2. Evaluate the security issues related to the development of cloud applications.
3. Manage and deploy a cloud based application.
4. Research and critique a topic related to Software development in the cloud.
5. Analyze a real world problem and develop a cloud based software solution.

UNIT I - DESIGNING CLOUD BASED APPLICATIONS (5 hours)
Role of business analyst, requirements gathering, UML, use of state diagrams, wire frame prototypes, use of design tools such as Balsamiq. Selecting front end technologies and standards, Impact of growth in mobile computing on functional design and technology decisions.

UNIT II - CLOUD APPLICATION DEVELOPMENT (7 hours)
Technical architecture considerations – concurrency, speed and unpredictable loads. Agile development, team composition (including roles/responsibilities),
working with changing requirements and aggressive schedules. Understanding Model View Controller (MVC).
Advanced understanding of “views”, location, and the presentation layer: Advanced Ajax and JQuery. Presenting to different browsers and devices. Localization and internationalization; Understanding client location and device type. Mobile application development – Android, iOS, WP, RIM, Symbian.

UNIT III - STORING OBJECTS IN THE CLOUD (5 hours)
Session management. Advanced database techniques using MySQL and SQL Server, blob storage, table storage.
Working with Third Party APIs:
Overview of interconnectivity in cloud ecosystems. Working with Twitter API, Flickr API, Google Maps API. Advanced use of JSON and REST.

UNIT IV - CLOUD APPLICATIONS AND SECURITY ISSUES (6 hours)
Understanding cloud based security issues and threats (SQL query injections, common hacking efforts), SSL, encrypted query strings, using encryption in the database. Authentication and identity. Use of oAuth. OpenID; Understanding QA and Support: Common support issues with cloud apps: user names and passwords, automated emails and spam, browser variants and configurations. Role of developers in QA cycle. QA techniques and technologies. Use of support forums, trouble ticketing.

UNIT V - USE CASES (7 hours)
Design, develop and deploy an advanced cloud app using framework and platform of choice to demonstrate an understanding of database, presentation and logic. Application should demonstrate integration with third party API, sensitivity to geography of user (language, currency, time and date format), authentication of user, security, and awareness of client device/browser.
Case Studies: Salesforce, Basecamp, Xero.com, Dropbox.

PRACTICAL (30 hours)

REFERENCES
2. Eugenio Pace, Dominic Betts, Scott Densmore, Ryan Dunn, Masashi Narumoto, MatiasWoloski, “Developing Applications for the Cloud on the
APPLICATION DEVELOPMENT FRAMEWORKS

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Contact Hours - 60</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Pre-requisite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Web Application Development</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cloud Storage Infrastructures</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PURPOSE

This module has two distinct sections. In the first section students will learn about building applications using a popular application development framework. After the first section is completed the module will focus on one of the following areas: Enterprise Integration or Rich Web Applications.

INSTRUCTIONAL OBJECTIVES

1. Identify the key aspects of developing applications using a framework.
2. Write code to integrate frameworks to access relational databases
3. Evaluate framework technologies for remote communication.
4. Option 1 - Enterprise Integration: Design and build concurrent applications and schedule tasks using an application framework. Assess the integration of serialization and remoting to call remote applications.
5. Option 2 - Rich Web Applications: Integrate an application framework to implement stateful interactions. Compare rapid productivity tools such as Grails and Roo, etc.

UNIT I - SPRING FRAMEWORK

Overview of Java frameworks, introduction to Spring. Using Spring to configure an application, the bean life-cycle, simplifying application configuration, annotation-based dependency injection, testing a Spring-based application.
UNIT II- EFFECTIVE MIDDLE-TIER ARCHITECTURE (6 hours)
Adding behavior to an application using aspects, data access with Spring, simplifying JDBC-based data access, driving database transactions in a Spring environment.

UNIT III - IMPLEMENTING ENTERPRISE INFORMATION CONNECTIVITY (6 hours)
Object-to-relational mapping (ORM), Hibernate in a Spring environment, effective web application architecture, Spring MVC, RESTful web services with Spring MVC.

UNIT IV - INTEGRATION WITH ENTERPRISE SERVICES (4 hours)
Securing web applications, emitting framework, simplifying message applications with Spring JMS, adding manageability to an application with Spring JMX.

UNIT V - ENTERPRISE INTEGRATION (8 hours)
Integration Foundations Essential concurrency, tasks and scheduling, serialisation and remoting. Working with Web Services Advanced XML, SOAP web services, RESTful web services, web service security. Messaging and Transactions Messaging, working with JMS, transactional JMS, distributed transaction management. Spring Batch and Integration Spring batch, advanced Spring integration, Service-Oriented Architecture (SOA)

(OR)
Rich Web Applications: Spring Web MVC Spring MVC annotation-based programming model, Page composition with layout technologies such as Tiles, Rendering multiple content types, Handling exceptions, Processing form pages, Internationalization and personalization. Spring Web Flow Spring web flow, authoring flow definitions, view states, events and transitions, adding flow behaviour. Working with scoped data, using the web flow integration with JSF. Spring Security Securing a web application with Spring security. Integration With Client Technologies Modern Web UI, progressive enhancement, accessibility, web design. Working with HTML, CSS and JavaScript, Using a JavaScript framework (Dojo) for DOM scripting and UI widgets, integrating Flex clients with Spring applications. Rapid Application Development Using Grails & Spring Roo

PRACTICAL (30 hours)
REFERENCES
5. Website: “Spring Source”.
 http://www.springsource.com/.
6. Website: “Sun – Oracle”.
7. Website: “IBM”.

<table>
<thead>
<tr>
<th>CC2103</th>
<th>SCRITING FOR SYSTEM ADMINISTRATORS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Contact Hours - 60</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Pre-requisite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PURPOSE
This module will address the scripting skills that System administrators need to help them with their daily tasks.

INSTRUCTIONAL OBJECTIVES
1. Assess system administration tasks and design scripts to automate these tasks.
2. Solve system administration problems using a shell interface.
3. Design complex scripts in a scripting language such as Perl, Python or Ruby.
4. Develop scripts to a high level in Powershell

UNIT I - POWERSHELL (6 hours)
Shell and Powershell Scripting: Shell syntax, sed, awk, grep, diff, join, etc.

UNIT II - cmdlets (6 hours)
Unix and Windows CLI. cmdlets, wmic.
UNIT III - TROUBLESHOOTING (6 hours)
Managing processes, services, events and network connections; Troubleshooting.

UNIT IV - APPLICATIONS OF SCRIPTING (6 hours)
Scripting in a high-level Language: Language syntax, Applications of scripting e.g. querying SNMP devices, running external processes, managing user accounts, monitoring file systems & processes,

UNIT V – USING LDAP AND AD (6 hours)
Working with LDAP and AD, analyze log files, administer network names and configuration services, maintain, monitor and map network services, processes, package management, statistics gathering and reporting. Using scripting to automate tedious and repetitive tasks.

PRACTICAL (30 hours)

REFERENCES (30 hours)
PURPOSE
This course focuses on the fundamentals of data warehousing and their associated problem areas. Data pre-processing and preparation, outlier detection, data warehouse design, On-line analytical processing are the major areas of coverage of this course. This course also deals with the fundamentals of data mining and algorithms associated with the same.

INSTRUCTIONAL OBJECTIVES
1. Describe the fundamental concepts, benefits and problem areas associated with data warehousing
2. Describe the various architectures and main components of a data warehouse.
3. Design a data warehouse, and be able to address issues that arise when implementing a data warehouse.
4. Compare and contrast OLAP and data mining as techniques for extracting knowledge from a data warehouse.

UNIT I - DATA WAREHOUSING (6 hours)
OLTP systems versus data warehousing. Data warehousing concepts; benefits and problem areas; Architecture and main components of a data warehouse; Managing metadata.

UNIT II - DATA PREPARATION AND PRE-PROCESSING (11 hours)
Need to pre-process data; Data Cleaning; Handling Missing Data; Identifying Misclassifications; Graphical methods for identifying Outliers; Data Transformation; Numerical Methods for Identifying Outliers.

UNIT III - DATA WAREHOUSE DESIGN (8 hours)

UNIT IV - ON-LINE ANALYTICAL PROCESSING (OLAP) (8 hours)
OLAP applications. OLAP operations: roll-up, drill-down, slice and dice, and pivot. OLAP Tools: Multidimensional OLAP (MOLAP), Relational OLAP (ROLAP), Hybrid OLAP (HOLAP) and Desktop OLAP (DOLAP).
UNIT V - Data Mining (12 hours)

REFERENCES

<table>
<thead>
<tr>
<th>CC2105</th>
<th>CONVERGED NETWORKS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Contact Hours - 45</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Prerequisites</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Knowledge of basic networking concepts, routing protocols and IP addressing mechanisms.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PURPOSE
This course focuses on the design, development, selection, deployment and support of advanced IP based audio, video and data transmission in a converged network. The course aims at providing an in depth knowledge to the learners in the field of Multi protocol label switching and IP Multicasting. QoS details of converged network shall be dealt in a detailed manner in this course.

INSTRUCTIONAL OBJECTIVES
1. Implement applications enabled by a multi-service convergent network
2. Explain how real-time traffic is prioritized and carried within a data network.
3. Design Multicast Networks
4. Engineer networks suitable for voice, multicast traffic and high-speed switched Internet based networks

UNIT I - TELEWORKER SOLUTIONS
(8 hours)
Cable and DSL Technology, cable system components and benefits, DOCSIS, HFC Cable Network Architecture; DSL Variants, DSL performance and distance limitations

UNIT II - REAL-TIME APPLICATIONS IN A CONVERGED NETWORK
(10 hours)
Review of Traditional Voice Networks; Codec / Vocoder Technologies; VoIP Transport; Real-Time Concerns; RTP/RTCP; H.323 and SIP as signaling protocols; Cloud-based VoIP & Video services

UNIT III - QOS FOR A CONVERGED NETWORK
(10 hours)
IP QoS review of QoS; 802.1p/q; Queueing mechanisms – WFQ, CBWFQ, Low-Latency, Random Early Detection; Integrated Services; Reservation Protocol (RSVP); Differentiated Services (Diffserv); QoS issues in WANs; implementation of Diffserv QoS model

UNIT IV - MULTIPROTOCOL LABEL SWITCHING
(10 hours)
MPLS Header; MPLS forwarding basics; Quality of service with MPLS TE; MPLS VPN applications; implementation of MPLS and MPLS VPN

UNIT V - IP MULTICAST:
(7 hours)
Multicast addressing; IGMP, IGMP snooping; Multicast routing protocols (PIM-DM, -SM, SDM); Configuration

REFERENCES

<table>
<thead>
<tr>
<th>CC2106</th>
<th>NETWORK SECURITY</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Contact Hours - 45</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Prerequisites</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Networking Fundamentals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PURPOSE
This course will explore the aspects of IPSec, Virtual Private Networks and SSH tunneling in addition to the cloud security issues. The course covers the details of wireless security including WEP and WPA. Different types of firewalls including packet filters, application level gateway and NAT are also the topics of discussion in this course. This course provides the learners with the details on IDS/IPS, sniffers and, packet capturing tools and mechanisms.

INSTRUCTIONAL OBJECTIVES
1. Identify and evaluate threats to network security and data loss.
2. Install, configure, and evaluate firewalls.
4. Install, configure, and evaluate VPN (Virtual Private Network) Technology.
5. Evaluate the security of a wireless network system.
6. Create and evaluate packet captures.

UNIT I - INTERNET SECURITY & ENCRYPTION (10 hours)
Encryption of static data, IPSec, AH, ESP, IKE, ISAKMP/Oakley, Tunnel mode, Transport mode, Virtual Private Networks (VPNs), SSH Tunneling, IP6 issues, Cloud Security Issues.

UNIT II - FIREWALLS (10 hours)
Packet Filters, Stateful, Stateless, Bastion Host, Circuit Level, Application Gateway, SOCKS, DMZ, Host-Based Firewall, Egress Filtering, Network Address Translation (NAT), Multi-homing, IPTables/NetFilter, implementing NAT.

UNIT III - SNIFFERS AND PACKET CRAFTING (10 hours)
Libpcap, dSniff, Wireshark, tcpdump, Mitigation of Sniffer Attacks, ARP Cache Poisoning, Port Stealing, Switch flooding, DNS and IP Spoofing, Session...
Hijacking, Sequence Numbers, Ettercap, idle host scanning, Default TTLs, Countermeasures, Packet Crafting using eghping, scapy.

UNIT IV - WIRELESS SECURITY (6 hours)
802.11, wardriving, netstumbler, kismet, wellenreiter, WEP, WPA, cowpatty.

UNIT V - INTRUSION DETECTION & PREVENTION (9 hours)
Focus on NIDS, snort, Types of IDSs, Network IDSs, Anomaly based Detection, Signature based Detection, Evasion Techniques, False Positives, NIDS implementation using eg snort, Data Loss Prevention.

REFERENCES
PURPOSE
This course provides a comprehensive introduction to storage technology in an increasingly complex IT environment. It builds a strong understanding of underlying storage technologies and prepares you to learn advanced concepts and technologies. The course also deals with architectures, features and benefits of Intelligent Storage Systems; networked storage technologies such as FC-SAN, NAS and IP-SAN; long-term archiving solutions, the increasingly critical area of information security and the emerging field of storage virtualization technologies.

INSTRUCTIONAL OBJECTIVES

1. Evaluate various storage classifications and technologies.
2. Analyze storage architectures, processes, components and how they relate to virtualization.
3. Justify the implementation of a range of storage solutions to enable business continuity.
4. Analyze storage security design, implementation, monitoring and management.

UNIT I - STORAGE SYSTEMS (10 hours)

UNIT II - STORAGE NETWORKING TECHNOLOGIES (12 hours)
Direct-Attached Storage (DAS) architecture, Storage Area Network (SAN) attributes, components, topologies, connectivity options and zoning. FC protocol stack, addressing, flow control, and classes of service. Networked Attached Storage (NAS) components, protocols, IP Storage Area Network (IP SAN) iSCSI, FCIP and FCoE architecture. Content Addressed Storage (CAS) elements, storage, and retrieval processes.
UNIT III - VIRTUALIZATION (6 hours)
Block-level and file-level storage virtualization technology, virtual provisioning and cloud computing.

UNIT IV - BUSINESS CONTINUITY (10 hours)
Business Continuity measurement, terminologies, and planning. Backup designs, architecture, topologies, and technologies in SAN and NAS environments. Local and Remote replication using host and array-based replication technologies such as Synchronous and Asynchronous methods.

UNIT V - STORAGE SECURITY AND MANAGEMENT (7 hours)
Storage security framework and various security domains. Security implementation in SAN, NAS and IP-SAN networking. Monitoring and Storage management activities and challenges

REFERENCES

<table>
<thead>
<tr>
<th>CC2108</th>
<th>OBJECT ORIENTED SOFTWARE ENGINEERING</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Contact Hours - 60</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Pre-requisites</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PURPOSE
To learn the advanced software engineering principles and methodologies for effective software development

INSTRUCTIONAL OBJECTIVES
1. To learn about software prototyping, analysis and design
2. To learn UML and its usage
UNIT I - INTRODUCTION (5 hours)

UNIT II - PLANNING & SCHEDULING (6 hours)

UNIT III - ANALYSIS & DESIGN (10 hours)

UNIT IV - IMPLEMENTATION & TESTING (5 hours)
Top-Down, Bottom-Up, object oriented product Implementation & Integration. Software Testing methods - White Box, Basis Path-Control Structure – Black Box-Unit Testing- Integration testing- Validation & System testing. Testing OOA & OOD models-Object oriented testing strategies.

UNIT V - MAINTENANCE (4 hours)
Maintenance process-System documentation-program evolution dynamics- Maintenance costs-Maintainability measurement – Case Studies

PRACTICAL (30 hours)

REFERENCES

<table>
<thead>
<tr>
<th>CC2109</th>
<th>DATA CENTER VIRTUALIZATION</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Contact Hours - 45</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Pre-requisites</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Managing Virtual Environments</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PURPOSE

This course focuses on the challenges in setting up a data center. Resource monitoring using hypervisors and access control to virtual machines will be covered in depth in this course. Setting up of a virtual data center and how to manage them with software interfaces will be discussed in detail.

INSTRUCTIONAL OBJECTIVES

1. Identify various constraints and challenges in setting up a data center
2. Demonstrate Enterprise level virtualization and access control in virtual machines
3. Perform Resource monitoring and execute backup and recovery of virtual machines.

UNIT I - DATA CENTER CHALLENGES

How server, desktop, network Virtualization and cloud computing reduce data center footprint, environmental impact and power requirements by driving server consolidation; *Evolution of Data Centers*: The evolution of computing infrastructures and architectures from standalone servers to rack optimized blade servers and unified computing systems (UCS).

UNIT II - ENTERPRISE-LEVEL VIRTUALIZATION

Provision, monitoring and management of a virtual datacenter and multiple enterprise-level virtual servers and virtual machines through software management interfaces; *Networking* and Storage in Enterprise Virtualized Environments - Connectivity to storage area and IP networks from within virtualized environments using industry standard protocols.

UNIT III - VIRTUAL MACHINES & ACCESS CONTROL

Virtual machine deployment, modification, management; monitoring and migration methodologies.
UNIT IV - RESOURCE MONITORING
(6 hours)
Physical and virtual machine memory, CPU management and abstraction techniques using a hypervisor.

UNIT V - VIRTUAL MACHINE DATA PROTECTION
(12 hours)
Backup and recovery of virtual machines using data recovery techniques; Scalability - Scalability features within Enterprise virtualized environments using advanced management applications that enable clustering, distributed network switches for clustering, network and storage expansion; High Availability : Virtualization high availability and redundancy techniques.

REFERENCES

<table>
<thead>
<tr>
<th>CC2110</th>
<th>CLOUD APPLICATION DEVELOPMENT</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Contact Hours - 60</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Pre-requisites</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PURPOSE
This module introduces students to developing web and cloud applications. By the end of the module the student will be able to build and deploy web and cloud-based application.
INSTRUCTIONAL OBJECTIVES

1. Use best practices in the design and development of elegant and flexible cloud software solutions.
2. Create, implement and deploy a cloud/LAMP based application.
3. Analyze a real world problem and develop a cloud/LAMP based software solution.
4. Contrast software development in the web, cloud and others

UNIT I - CLOUD BASED APPLICATIONS (4 hours)
Introduction, Contrast traditional software development and development for the cloud. Public v private cloud apps. Understanding Cloud ecosystems – what is SaaS/PaaS, popular APIs, mobile;

UNIT II - DESIGNING CODE FOR THE CLOUD (8 hours)
Class and Method design to make best use of the Cloud infrastructure; Web Browsers and the Presentation Layer- Understanding Web browsers attributes and differences. Building blocks of the presentation layer: HTML, HTML5, CSS, Silverlight, and Flash.

UNIT III - WEB DEVELOPMENT TECHNIQUES AND FRAMEWORKS (8 hours)
Building Ajax controls, introduction to Javascript using JQuery, working with JSON, XML, REST. Application development Frameworks e.g. Ruby on Rails, .Net, Java API's or JSF; Deployment Environments – Platform As A Service (PAAS), Amazon, vmForce, Google App Engine, Azure, Heroku, AppForce

UNIT IV - USE CASE 1: BUILDING AN APPLICATION USING THE LAMP STACK (4 hours)
Setting up a LAMP development environment. Building a simple Web app demonstrating an understanding of the presentation layer and connectivity with persistence.

UNIT V - USE CASE 2: DEVELOPING AND DEPLOYING AN APPLICATION IN THE CLOUD (6 hours)
Building on the experience of the first project students will study the design, development, testing and deployment of an application in the cloud using a development framework and deployment platform.

PRACTICAL (30 hours)
REFERENCES

<table>
<thead>
<tr>
<th>CC2111</th>
<th>CLOUD STRATEGY PLANNING & MANAGEMENT</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Contact Hours - 45</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Pre-requisites</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PURPOSE
This course deals with the concepts and technological advances fueling the rapid adoption of cloud computing today. This course provides the students with the skills and knowledge required to plan and manage a Cloud Computing strategy within an organization. This course will enable students to evaluate the strategic value of Cloud Computing using IT Governance and Compliance.

INSTRUCTIONAL OBJECTIVES
1. Strategically assess how cloud computing enables IT Transformation and business value in an organization.
2. Analyze the role that cloud computing can play in the business process.
3. Critically appraise how the incorporation of cloud computing in an IT strategy can deliver on strategic business objectives.
4. Evaluate how cloud computing and Service Oriented Architecture (SOA) can deliver business agility.

5. Implement IT governance to manage business realization from cloud IT services.

UNIT I - ACHIEVING BUSINESS VALUE FROM IT TRANSFORMATION (9 hours)
Moving to a cloud architecture and strategy to achieve business value. BPM, IS, Porter’s Value chain model and BPR as a means of delivering business value; Developing Business Strategy: Investigate business strategy models to gain competitive advantage for organizations, SWOT/PEST, Economies of scale, Porter’s 3 Strategies and 5 Competitive Forces, D’Aveni’s hyper competition models.

UNIT II - STRATEGIC IT LEADERSHIP IN THE ORGANIZATION (9 hours)
Emphasize the roles of the strategic IS/IT leaders such as Chief Information Officer (CIO) and the Chief Technology Officer (CTO) in planning and managing IT Strategic development in the organization.

UNIT III - PLANNING A CLOUD COMPUTING BASED IT STRATEGY (9 hours)
Develop an IT strategy to deliver on strategic business objectives in the business strategy. IT Project planning in the areas of ITaaS, SaaS, PaaS and IaaS are essential in delivering a successful strategic IT Plan.

UNIT IV - SOA AND BUSINESS AGILITY (9 hours)
Shared services delivered by a Service Oriented Architecture (SOA) in a Private or Public Cloud. Services, Databases and Applications on demand. The effect on Enterprise Architecture and its traditional frameworks such as Zachman and The Open Group Architecture Framework (TOGAF).

UNIT V - BENEFIT REALIZATION AND IT GOVERNANCE (9 hours)
Managing resources (people, process, technology), to realize benefit from Private/Public Cloud IT services (IaaS, PaaS, PraaS, SaaS), Gartner’s 5 pillars of benefit realization. IT governance as a service in measuring the delivery of IT Strategy from Cloud IT Services using Sarbannes Oxley (CobiT) and other commonly-used approaches.

REFERENCES
 http://strategicitplanningguide.com/.

CC2112 DATA SCIENCE AND BIG DATA ANALYTICS

<table>
<thead>
<tr>
<th>Total Contact Hours - 60</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-requisites</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Knowledge of statistical techniques</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PURPOSE

This course provides practical foundation level training that enables immediate and effective participation in big data and other analytics projects. It includes an introduction to big data and the Data Analytics Lifecycle to address business challenges that leverage big data. The course provides grounding in basic and advanced analytic methods and an introduction to big data analytics technology and tools, including MapReduce and Hadoop.

INSTRUCTIONAL OBJECTIVES

1. Deploy the Data Analytics Lifecycle to address big data analytics projects
2. Apply appropriate analytic techniques and tools to analyze big data, create statistical models, and identify insights that can lead to actionable results
3. Select appropriate data visualizations to clearly communicate analytic insights to business sponsors and analytic audiences
4. Use tools such as: R and RStudio, MapReduce/Hadoop, in-database analytics, Window and MADlib functions
5. Explain how advanced analytics can be leveraged to create competitive advantage and how the data scientist role and skills differ from those of a traditional business intelligence analyst

UNIT I - INTRODUCTION TO BIG DATA ANALYTICS: (5 hours)

Big Data overview, State of the practice in analytics role of data scientists, Big Data Analytics in industry verticals
UNIT II - END-TO-END DATA ANALYTICS LIFE CYCLE (4 hours)
Key roles for successful analytic project, main phases of life cycle, Developing core deliverables for stakeholders

UNIT III - BASIC ANALYTIC METHODS: (8 hours)
Introduction to “R”, analyzing and exploring data with “R”, statistics for model building and evaluation

UNIT IV - ADVANCED ANALYTICS AND STATISTICAL MODELING FOR BIG DATA (7 hours)
Naïve Bayseian Classifier, K-means Clustering, Association Rules, Decision Trees, Linear and Logistic Regression, Time Series Analysis, Text Analytics;

UNIT V - MAPREDUCE/HADOOP (6 hours)
Technology and Tools – MapReduce/Hadoop, In- database Analytics, MADlib and advanced SQL Tools

PRACTICAL (30 hours)

REFERENCES
<table>
<thead>
<tr>
<th>S.No.</th>
<th>Details of Amendment</th>
<th>Effective from</th>
<th>Approval with date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>