UNIT-III
Classification and Nomenclature of Enzymes

R.KAVITHA,M.PHARM
LECTURER,
DEPARTMENT OF PHARMACUTICS
SRM COLLEGE OF PHARMACY
SRMUUNIVERITY
Trival name

• Gives no idea of source, function or reaction catalyzed by the enzyme.
• Example: trypsin, thrombin, pepsin.
Systematic Name

- According to the International union Of Biochemistry an enzyme name has two parts:
 - First part is the name of the substrates for the enzyme.
 - Second part is the type of reaction catalyzed by the enzyme. This part ends with the suffix “ase”.

Example: Lactate dehydrogenase
EC number

Enzymes are classified into six different groups according to the reaction being catalyzed. The nomenclature was determined by the Enzyme Commission in 1961 (with the latest update having occurred in 1992), hence all enzymes are assigned an “EC” number. The classification does not take into account amino acid sequence (i.e., homology), protein structure, or chemical mechanism.
EC numbers

- EC numbers are four digits, for example a.b.c.d, where “a” is the class, “b” is the subclass, “c” is the sub-subclass, and “d” is the sub-sub-subclass. The “b” and “c” digits describe the reaction, while the “d” digit is used to distinguish between different enzymes of the same function based on the actual substrate in the reaction.

- Example: for Alcohol:NAD\(^+\)oxidoreductase EC number is 1.1.1.1
The Six Classes

• EC 1. Oxidoreductases
• EC 2. Transferases
• EC 3. Hydrolases
• EC 4. Lyases
• EC 5. Isomerases
• EC 6. Ligases

• A list of the subclasses for each class is given below. Additional information on the sub-subclasses and sub-sub-subclasses (ie, full enzyme classification and names) can be found at the referenced web link.

• *From the Web version,*
 http://www.chem.qmul.ac.uk/iubmb/enzyme/index.html
EC 1. Oxidoreductases

- EC 1. Oxidoreductases: catalyze the transfer of hydrogen or oxygen atoms or electrons from one substrate to another, also called oxidases, dehydrogenases, or reductases. Note that since these are ‘redox’ reactions, an electron donor/acceptor is also required to complete the reaction.
EC 2. Transferases

- EC 2. Transferases – catalyze group transfer reactions, excluding oxidoreductases (which transfer hydrogen or oxygen and are EC 1). These are of the general form:
 - \(A-X + B \leftrightarrow BX + A \)
EC 3. Hydrolases

- EC 3. Hydrolases – catalyze hydrolytic reactions. Includes *lipases, esterases, nitrilases, peptidases/proteases*. These are of the general form:

- $A-X + H_2O \leftrightarrow X-OH + HA$
EC 4. Lyases

- EC 4. Lyases – catalyze non-hydrolytic (covered in EC 3) removal of functional groups from substrates, often creating a double bond in the product; or the reverse reaction, ie, addition of function groups across a double bond.

- \[A-B \rightarrow A=B + X-Y \]

- \[X \ Y \]

- Includes decarboxylases and aldolases in the removal direction, and synthases in the addition direction.
EC 5. Isomerases

- EC 5. Isomerases – catalyzes isomerization reactions, including racemizations and cis-tran isomerizations.
EC 6. Ligases

- EC 6. Ligases -- catalyzes the synthesis of various (mostly C-X) bonds, coupled with the breakdown of energy-containing substrates, usually ATP