M.Tech (Full Time) – EMBEDDED SYSTEM TECHNOLOGY

Curriculum & Syllabus

(2013 – 2014)

Faculty of Engineering & Technology
SRM University
SRM Nagar, Kattankulathur – 603 203
M.TECH - EMBEDDED SYSTEM TECHNOLOGY
(FULL TIME)
Curriculum & Syllabus
Batch 2013 – 2014 and onwards

<table>
<thead>
<tr>
<th>SI.No</th>
<th>Category</th>
<th>I Semester</th>
<th>II Semester</th>
<th>III Semester</th>
<th>IV Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Core Courses</td>
<td>12</td>
<td>12</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Elective Courses</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Supportive Courses</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Interdisciplinary Elective</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>Seminar</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>Project Work</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>16**</td>
</tr>
</tbody>
</table>

Credits per semester

<table>
<thead>
<tr>
<th>I Semester</th>
<th>II Semester</th>
<th>III Semester</th>
<th>IV Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>21</td>
<td>16</td>
<td>16</td>
</tr>
</tbody>
</table>

Total Credits to be earned for the award of M.Tech degree

71

*Project Work -Phase I **Project Work -Phase II

Core courses

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM2001</td>
<td>Digital System Design and Testing</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>EM2002</td>
<td>Microprocessors & Microcontrollers</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>EM2003</td>
<td>Embedded Systems Software</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>EM2004</td>
<td>Signal Processing for Embedded Systems</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

OR

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM2005</td>
<td>Real Time Operating Systems</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>EM2006</td>
<td>Embedded System Architecture</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

OR

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM2007</td>
<td>Microprocessor Architecture</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>EM2008</td>
<td>VLSI Design Methodologies and Programming in HDL</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

OR

<table>
<thead>
<tr>
<th>Course code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM2009</td>
<td>FPGA Design</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>
Program Electives

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM2101</td>
<td>Computer architecture</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>EM2102</td>
<td>Embedded Linux</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>EM2103</td>
<td>Principles of Distributed Embedded Systems</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>EM2104</td>
<td>Communication Network Processors</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>EM2105</td>
<td>Embedded Wireless Sensor Networks</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>EM2106</td>
<td>Wireless & Mobile Communications</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>EM2107</td>
<td>Embedded Control Systems</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>EM2108</td>
<td>Intelligent Systems</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>EM2109</td>
<td>Digital Image Processing</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>EM2110</td>
<td>Multimedia systems</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>EM2111</td>
<td>DSP Integrated Circuits</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>EM2112</td>
<td>Real Time Systems</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>EM2113</td>
<td>Electronic Product design and reliability engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Supportive Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>MA2009</td>
<td>Applied Mathematics (Embedded/Communication Systems)</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>VL2113</td>
<td>Fundamentals and applications of MEMS</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>VL2112</td>
<td>Reliability Engineering</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Other courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM2047</td>
<td>Seminar</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>EM2049</td>
<td>Project Work – Phase I</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>EM2050</td>
<td>Project Work – Phase II</td>
<td>0</td>
<td>0</td>
<td>32</td>
<td>16</td>
</tr>
</tbody>
</table>

CONTACT HOUR/CREDIT:
L: Lecture Hours per week T: Tutorial Hours per week P: Practical Hours per week C: Credit
PURPOSE
Learning design of digital circuits is a fundamental necessity for designing embedded systems. This subject provides necessary instruments to achieve that goal.

INSTRUCTIONAL OBJECTIVES
1. To impart knowledge on the theory of logic and logic functions.
2. To design digital circuits.
3. To learn fault diagnosis and testability algorithms.

UNIT I - ADVANCED TOPICS IN BOOLEAN ALGEBRA (13 hours)
Shannon’s Expansion theorem, Consensus theorem, Reed-Muller Expansion, Multiplexer logic as function generators, Design of static hazard-free and dynamic hazard-free logic circuits, Threshold logic, Symmetric functions.

UNIT II - SEQUENTIAL CIRCUIT DESIGN (12 hours)
Counters and Registers, Mealy and Moore machines, clocked synchronous sequential circuit design procedure-state diagrams-state table-state reduction-state assignment, Incompletely Specified Sequential Machines.

UNIT III - DESIGN WITH PROGRAMMABLE LOGIC DEVICES (11 hours)
Basic concepts, PROM as PLD, Programmable Array Logic (PAL), Programmable Logic Array (PLA), Design of combinational and sequential circuits using PLS’s, Complex PLD (CPLD), Introduction to Field Programmable Gate Arrays (FPGA), Xilinx FPGAs - Xilinx 3000 series and 4000 series FPGA.

UNIT IV - FINITE STATE MACHINES (FSM) (12 hours)
State Machine (SM) charts, Derivation of SM charts, Realization of SM charts, Linked State Machines, Architectures centered around Non-registered PLDs, State machine designs centered around shift registers, One-hot design method, Application of one-hot method.
UNIT V - FAULT DIAGNOSIS AND TESTABILITY ALGORITHMS

(12 hours)

REFERENCES

<table>
<thead>
<tr>
<th>EM2002</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Contact Hours – 75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisite: Nil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PURPOSE
To enable the student to understand the RISC (ARM) and CISC (Pentium) processors, which will be useful for designing high end embedded systems.

INSTRUCTIONAL OBJECTIVES
1. To learn RISC and CISC architectures of processors.
2. To learn ARM processor and its programming with Embedded C.
3. To learn to use ARM development tools and carry out experiments

UNIT I - MICROPROCESSOR ARCHITECTURE (9 hours)
UNIT II - HIGH PERFORMANCE CISC ARCHITECTURE – PENTIUM
(9 hours)
The software model - functional description - CPU pin descriptions - RISC concepts - bus operations - Super scalar architecture - pipelining - Branch prediction - The instruction and caches - Floating point unit - protected mode operation - Segmentation - paging - Protection - multitasking - Exception and interrupts - Input/Output - Virtual 8086 model - Interrupt processing - Instruction types - Addressing modes - Processor flags - Instruction set - Basic programming the Pentium Processor.Lab exercise.

UNIT III - HIGH PERFORMANCE RISC ARCHITECTURE(9 hours)
ARM: The ARM architecture - ARM organization and implementation - The ARM instruction set - The thumb instruction set - Basic ARM Assembly language program - ARM CPU cores.

ARM DEVELOPMENT ENVIRONMENT
The AMULET asynchronous ARM Processors. Embedded Operating Systems - Principle Components – Application case study – VLSI Ruby II Advanced communication processor – nuvoTon Cortex M0 (Nu-LB-NUC140) Microcontroller processor & its supporting tools.Lab exercise

UNIT IV - INTRODUCTION TO EMBEDDED C AND APPLICATIONS
(9 hours)

UNIT V: EMBEDDED OPERATING SYSTEMS(sEOS): (9 hours)

Practicals
(30 hours)
REFERENCES

<table>
<thead>
<tr>
<th>EM2003</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMBEDDED SYSTEMS SOFTWARE</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Total Contact Hours – 60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisite:Nil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PURPOSE
Introduce the student with software concepts used in embedded systems.

INSTRUCTIONAL OBJECTIVES
1. To learn C language and assembly programming.
2. To learn Object orientation for programming and C++.
3. To learn software modeling fundamentals.

UNIT I - INTRODUCTION TO ASSEMBLY LANGUAGE AND DATEREPRESENTATION IN C (12 hours)

UNIT II - PROGRAMMING IN C (12 hours)
Register usage conventions – Typical use of addressing options – Instruction sequencing – Procedure call and return – Functions – recursive functions -

UNIT III - OBJECT ORIENTED PROGRAMMING (10 hours)
Object oriented analysis and design - C++ classes and objects – functions – data structures - examples.

UNIT IV - UNIFIED MODELING LANGUAGE (14 hours)

UNIT V - EMBEDDED SOFTWARE DEVELOPMENT TOOLS AND RTOS (12 hours)
The compilation process – libraries – porting kernels – C extensions for embedded systems – emulation and debugging techniques – RTOS - system design using RTOS.

REFERENCES

<table>
<thead>
<tr>
<th>EM2004</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIGNAL-PROCESSING FOR EMBEDDED SYSTEMS</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Total Contact Hours – 60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisite:Nil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PURPOSE
Signal Processing is an upcoming embedded field wherein many small
systems and robots are built with signal processing functions. This course gives an idea of signal processing concepts for embedded systems.

INSTRUCTIONAL OBJECTIVES

1. To learn DSP basics.
2. To know about typical DSP applications and their theory.
3. To learn DSP programming methods for small systems and related issues.

UNIT I - OVERVIEW OF DSP

UNIT II - DSP APPLICATIONS-I

UNIT III - DSP APPLICATIONS – II

Error correcting codes and channel coding, Hamming distance and error correction, CRC, Reed Solomon codes, convolution codes, Viterbi decoding, interleaving – practical issues in using DSP.

UNIT IV - DSP PROGRAMMING

Overview of DSP algorithms – DSP architectures – optimizing DSP software – RTOS for DSP, testing and debugging DSP systems – embedded DSP software design using multicore SoC architectures.

UNIT V - DSP PROGRAM OPTIMIZATION AND GUIDELINES:

REFERENCES

<table>
<thead>
<tr>
<th>EM2005</th>
<th>REAL TIME OPERATING SYSTEMS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Total Contact Hours – 60</td>
<td>Prerequisite: Nil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PURPOSE

Real time operating systems are being widely used in many embedded systems. This course deals with the basics and typical RTOSs.

INSTRUCTIONAL OBJECTIVES

1. To learn fundamentals of operating system.
2. To study implementation aspects of real time concepts.
3. To study example RTOSs and applications.

UNIT I - RTOS PROGRAMMING FUNDAMENTALS: (12 hours)

UNIT II - RTOS FUNDAMENTALS: (10 hours)

Task management – Dual role of time – Intertask communication - Process input/output.

UNIT III - REAL TIME SCHEDULING: (11 hours)

UNIT IV - REAL TIME OPERATING SYSTEMS: (18 hours)

VX works - uCOS – POSIX standards - RT Linux – device drivers - Real time library of Keil IDE - RTOS Porting to a Target.

UNIT V - RTOS APPLICATION DOMAINS: (9 hours)

Case studies: Free-RTOS architecture - Embedded RTOS for voice over IP – RTOS for fault Tolerant Applications – RTOS for Control Systems.
REFERENCES
4. VX works Programmers manual.
7. “Getting started with RT-Linux”, FSM Labs., Inc.,
8. Web site:

<table>
<thead>
<tr>
<th>EM2006</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMBEDDED SYSTEM ARCHITECTURE</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Total Contact Hours – 60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PURPOSE
To familiarize the student with the architecture of embedded systems in general.

INSTRUCTIONAL OBJECTIVES
1. To learn the rationale and concepts for designing embedded systems.
2. To know about typical engineering issues of software development.

UNIT I - INTRODUCTION TO EMBEDDED SYSTEMS (13 hours)

UNIT II - PROCESSOR HARDWARE (12 hours)
UNIT III - SUPPORT HARDWARE (12 hours)

UNIT IV - SOFTWARE (11 hours)

UNIT V - ENGINEERING ISSUES OF SOFTWARE (12 hours)
Design and development: architectural patterns and reference models – creating the architectural structures – documenting the architecture – analyzing and evaluating the architecture – debugging testing, and maintaining.

REFERENCES

<table>
<thead>
<tr>
<th>EM2007</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>MICROPROCESSOR ARCHITECTURE</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Total Contact Hours – 60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisite:Nil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PURPOSE
To familiarize the student with the design and operating issues of microprocessor architectures.

INSTRUCTIONAL OBJECTIVES
1. To analyze the historical development of microprocessor architectures.
2. To know about processor working principles.
3. To learn multiprocessor architectures.

UNIT I - BASICS (12 hours)

UNIT II – SUPERSCALAR PROCESSORS (13 hours)

UNIT III - INSTRUCTION HANDLING (13 hours)
Branch prediction, instruction fetching, register renaming, instruction scheduling, memory access instructions, back-end optimizations.

UNIT IV - CACHE HIERARCHY (10 hours)
L1 cache access – hiding memory latencies – large higher level caches – main memory.

UNIT V - MULTIPROCESSING (12 hours)

REFERENCES

<table>
<thead>
<tr>
<th>EM2008</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLSI DESIGN METHODOLOGIES AND PROGRAMMING IN HDL</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Total Contact Hours – 75</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisite : Nil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PURPOSE
As the hardware is becoming more customizable it is essential for the embedded designer to know the fundamentals of VLSI design, to implement special function circuits used in embedded systems. Hence this course is offered.

INSTRUCTIONAL OBJECTIVES
1. To learn analysis of MOS transistor with all its relevant aspects to the static and dynamic operation.
2. To know principles of low power CMOS circuit design.
3. To learn basic hierarchical modeling concepts used in digital design.
4. To learn the four levels of abstraction – behavioral dataflow gate-level and switch-level.

<table>
<thead>
<tr>
<th>UNIT I - MOS TRANSISTOR THEORY</th>
<th>(9 hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOS transistor theory introduction - Ideal V-I characteristics - second order effects- CMOS logic - CMOS fabrication and layout - VLSI design flow.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT II - CIRCUIT CHARACTERIZATION AND PERFORMANCE ESTIMATION</th>
<th>(9 hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMOS inverter - DC transfer characteristics- Delay estimation - logical effort - Power dissipation - scaling - latch up.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT III - COMBINATIONAL AND SEQUENTIAL CIRCUIT DESIGN</th>
<th>(9 hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static CMOS - ratioed circuits - differential cascode voltage switch logic- Dynamic circuit - domino logic-pass transistor circuits - CMOS D latch and edge triggered flipflop - Schmitt trigger.Lab exercises.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT IV - HDL PROGRAMMING USING BEHAVIORAL AND DATA FLOW MODELS</th>
<th>(9 hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verilog introduction - Typical design flow-Modules and ports-instances – components –lexical conventions - number specification - strings – identifiers and keywords –data types - System tasks and compiler directives - behavioral modeling - dataflow modeling - RTL - Gate level modeling - programs for combinational and sequential.Lab exercises</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>UNIT V - HDL PROGRAMMING WITH STRUCTURAL AND SWITCH LEVEL MODELS</th>
<th>(9 hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tasks and functions –difference between tasks and functions-switch level-MOS switches - CMOS switches- examples - CMOS NAND and NOR – MUX using transmission gate – CMOS flipflop.</td>
<td></td>
</tr>
</tbody>
</table>

Practicals

REFERENCES

PURPOSE
Complex and faster embedded systems can be made with FPGAs. This course introduces the design concepts of using FPGAs.

INSTRUCTIONAL OBJECTIVES
1. To learn FPGA architectures.
2. To learn and use design flow for using FPGA.
3. To learn programming of FPGA with practical circuits.

UNIT I - INTRODUCTION TO ASICS, CMOS LOGIC AND ASIC LIBRARY DESIGN (9 hours)
Types of ASICs - Design Flow - CMOS transistors, CMOS design rules - Combinational Logic Cell - Sequential logic cell - Data path logic cell - transistors as resistors - transistor parasitic capacitance - Logical effort - Library cell design - Library architecture.

UNIT II - PROGRAMMABLE LOGIC CELLS AND I/O CELLS (9 hours)
Digital clock Managers- Clock management- Regional clocks- Block RAM – Distributed RAM-Configurable Logic Blocks-LUT based structures – Phase locked loops- Select I/O resources – Anti fuse - static RAM - EPROM and EEPROM technology.

UNIT III - DEVICE ARCHITECTURES (9 hours)
Device Architecture-Spartan 6 -Vertex 4 architecture- Altera Cyclone and Quartus architectures.

UNIT IV - DESIGN ENTRY AND TESTING (9 hours)
UNIT V - FLOOR PLANNING, PLACEMENT AND ROUTING

(9 hours)

System partition - FPGA partitioning - partitioning methods - floor planning - placement - physical design flow - global routing - detailed routing - special routing - circuit extraction – DRC.

Practicals

(30 hours)

REFERENCES

3. Design manuals of Altera, Xilinx and Actel.

<table>
<thead>
<tr>
<th>EM2101</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPUTER ARCHITECTURE</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Contact Hours – 45
Prerequisite :Nil

PURPOSE

To introduce students with general concepts of computer architecture basics to enable them to use the processors effectively.

INSTRUCTIONAL OBJECTIVES

1. To familiarize with fundamentals of computer design.
2. To learn parallel and pipeline architectures.
3. To learn principles of parallel programming.

UNIT I - PROCESSOR AND MEMORY HIERARCHY

(9 hours)

Multiprocessors and Multicomputers – Multivector and SIMD computers – Architectural Development Tracks – Processors and Memory Hierarchy – Advanced Processor Technology – Superscalar and vector Processor – Memory Hierarchy technology-Virtual memory technology.

UNIT II - FUNDAMENTALS OF COMPUTER DESIGN

(9 hours)

UNIT III - PARALLEL AND SCALABLE ARCHITECTURES
(9 hours)

UNIT IV - PIPELINING AND SUPER SCALAR TECHNIQUES
(9 hours)

UNIT V - SOFTWARE FOR PARALLEL PROGRAMMING
(9 hours)

REFERENCES
EM2102

EMBEDDED LINUX

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Contact Hours – 45

Prerequisite :Nil

PURPOSE

To enable the student to learn developing Linux based embedded applications.

INSTRUCTIONAL OBJECTIVES

1. To learn fundamentals of embedded linux.
2. To learn to use GNU tool chain.
3. To learn to implement embedded linux applications.

UNIT I - LINUX FUNDAMENTALS (9 hours)
Introduction - host-target development setup - hardware support - development languages and tools – RT linux.

UNIT II - INITIALIZATION (9 hours)
Linux kernel and kernel initialization - system initialization – hardware support - bootloaders.

UNIT III - DEVICE HANDLING (9 hours)
Device driver basics - module utilities - file systems - MTD subsystems – busybox.

UNIT IV - DEVELOPMENT TOOLS (9 hours)

UNIT V - DEVICE APPLICATIONS (9 hours)
Asynchronous serial communication interface - parallel port interfacing - USB interfacing - memory I/O interfacing - using interrupts for timing.

REFERENCES

<table>
<thead>
<tr>
<th>EM2103</th>
<th>PRINCIPLES OF DISTRIBUTED EMBEDDED SYSTEMS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Contact Hours – 45

Prerequisite : Nil

PURPOSE
To introduce the design concepts of distributed embedded systems and CAN network, which is widely used in automotive and industrial embedded systems.

INSTRUCTIONAL OBJECTIVES
1. To understand the design principles of distributed embedded systems.
2. To learn CAN and CANopen networking.
3. To learn to design CAN network based systems.

UNIT I - REAL-TIME ENVIRONMENT
(9 hours)
Real-time computer system requirements – classification of real time systems – simplicity – global time – internal and external clock synchronization – real time model.

UNIT II - REAL-TIME OPERATING SYSTEMS
(6 hours)
Inter component communication – task management – dual role of time – inter task interactions – process input/output – agreement protocols – error detection.

UNIT III - SYSTEM DESIGN
(12 hours)
UNIT IV - INTRODUCTION TO CAN (9 hours)
Introduction to CAN Open – CAN open standard – Object directory – Electronic Data Sheets & Devices.

UNIT V - CAN STANDARDS (9 hours)
Configuration Files – Service Data Objectives – Network management CAN open messages – Device Profile Encoder.

REFERENCES

<table>
<thead>
<tr>
<th>EM2104</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMMUNICATION NETWORK PROCESSORS</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Contact Hours – 45
Prerequisite : Nil

PURPOSE
There is a need for designing hardware and software for data communication devices. This course aims at equipping the student with necessary knowledge and design principles for network equipment like routers, bridges etc.,

INSTRUCTIONAL OBJECTIVES
1. To familiarize embedded communication devices.
2. To understand the functions of each communication layer of ISO standard.
3. To learn network processors.

UNIT I - OVERVIEW OF DATA NETWORKS (6 hours)
End point: Data Modems, Serial interfaces, ISDN interface – Communication: Types of switching, Types of error: single and burst error, Error detection, redundancy check: Longitudinal, vertical, and cyclic error correction, architecture of computer network - Overview of OSI reference model – Network components: Routers, Bridges and Gateways.

UNIT II - COMMUNICATION SOFTWARE DESIGN (12 hours)
Ecosystem - embedded communications software - software partitioning - module and task decomposition - Partitioning case study - Protocol software -
debugging protocols - tables and other data structures - table access routines - Buffer and timer management - Management software – device & router management – CLI based management & HTTP based management - Agent to protocol interface – device to manager communication – system setup, boot & post-boot configuration – saving and restoring the configuration.

UNIT III - MULTI-BOARD DESIGN
Multiboard common architectures for communication equipment – Single board, chassis and rack-based designs - Components of a multi board designs – RTOS support for distribution – data structure and state machine changes for distribution – failures and fault tolerance in multi board systems.

UNIT IV - DESIGN PRINCIPLES OF SCHEDULING

UNIT V - COMMUNICATION PROCESSOR ARCHITECTURES

REFERENCES
<table>
<thead>
<tr>
<th>EM2105</th>
<th>EMBEDDED WIRELESS SENSOR NETWORKS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Contact Hours – 45

Prerequisite : Nil

PURPOSE

Wireless sensor networks are an important application of embedded systems, giving scope for unique designs and applications. This course is aimed at imparting knowledge on wireless sensor networks and practical implementation.

INSTRUCTIONAL OBJECTIVES

1. To understand the concepts of sensor networks.
2. To learn implementation issues and techniques wireless sensor nodes.

UNIT I - INTRODUCTION TO WSN *(9 hours)*

Introduction to WSN-Challenges for WSNs - Characteristic requirements - Required mechanisms - Single-node architecture - Hardware components - Energy consumption of sensor nodes - Operating systems and execution environments - Some examples of sensor nodes.

UNIT II - NETWORK ARCHITECTURE *(9 hours)*

Sensor network scenarios - Optimization goals and figures of merit - Design principles for WSNs, Service interfaces of WSNs - Gateway concepts.

UNIT III - SENSOR NETWORK IMPLEMENTATION *(9 hours)*

UNIT IV - PROGRAMMING MODELS *(9 hours)*

An Introduction to the Concept of Cooperating Objects and Sensor Networks- System Architectures and Programming Models.

UNIT V - CASE STUDIES *(9 hours)*

Wireless sensor networks for environmental monitoring, Wireless sensor networks with mobile nodes, Autonomous robotic teams for surveillance and monitoring, Inter-vehicle communication networks.
REFERENCES

<table>
<thead>
<tr>
<th>EM2106</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>WIRELESS AND MOBILE COMMUNICATIONS</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Total Contact Hours – 45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisite :Nil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PURPOSE
To introduce the concepts of mobile wireless communication systems.

INSTRUCTIONAL OBJECTIVES

1. To make the student learn fundamentals of wireless communications.

2. To learn about the systems which operate on wireless principles.

UNIT I - INTRODUCTION
Wireless Transmission-signal propagation-spread spectrum-Satellite Networks-Capacity Allocation-FAMA-DAMA-MAC.

UNIT II - MOBILE NETWORKS

UNIT III - WIRELESS NETWORKS
UNIT IV - ROUTING (9 hours)

UNIT V - TRANSPORT AND APPLICATION LAYERS (9 hours)

REFERENCES

<table>
<thead>
<tr>
<th>EM2107</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMBEDDED CONTROL SYSTEMS</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Contact Hours – 45
Prerequisite: Nil

PURPOSE
To introduce the basic concepts of control systems and its embedded implementation.

INSTRUCTIONAL OBJECTIVES
1. To learn the basics of control systems.
2. To learn control theory as used in embedded systems.
3. To learn application of control systems
4. To learn I/O devices used in control systems.

UNIT I - CONTROL SYSTEM BASICS (9 hours)
Z-transforms – performance requirements - block diagrams - analysis and design - sampling theory – difference equations.
UNIT II - CONTROL SYSTEM IMPLEMENTATION (9 hours)

UNIT III - CONTROL SYSTEM TESTING (9 hours)
Software implications - Controller implementation and testing in embedded systems - Measuring frequency response.

UNIT IV - INPUT DEVICES (9 hours)
Keyboard basics - Keyboard scanning algorithm - Character LCD modules - LCD module display Configuration - Time-of-day clock - Timer manager - Interrupts - Interrupt service routines - Interrupt-driven pulse width modulation. Triangle waves analog vs. digital values - Auto port detect - Capturing analog information in the timer interrupt service routine - Automatic, multiple channel analog to digital data acquisition.

UNIT V - OUTPUT DEVICES AND SENSORS (9 hours)
H Bridge – relay drives - DC/ Stepper Motor control – optical devices.
Case Study- Examples for sensor, actuator, control circuits with applications.

REFERENCES
PURPOSE
Intelligent system concepts are becoming more relevant in the embedded systems. To give an overview of design principles and applications this course is offered.

INSTRUCTIONAL OBJECTIVES
1. To learn basic intelligent system concepts.
2. To learn neural networks.
3. To learn fuzzy logic and its implementation methods.

UNIT I - INTRODUCTION AND BASIC CONCEPTS (9 hours)
Introduction- Humans and Computers, the structure of the brain, learning in machines, the differences. The basic neuron- Introduction, modeling the single neuron, learning in simple neurons, the perception: a vectorial perspective, the perception learning rule, proof, limitations of perceptrons.

UNIT II - MULTILAYER NETWORKS (9 hours)
The multi layer perceptron: Introduction, altering the perception model, the new model, the new learning rule, multi layer perception algorithm, XOR problem. Multi layer feed forward networks, error back propagation training algorithm: problems with back propagation, Boltzman training, Cauchy training, combined back propagation, Cauchy training.

UNIT III - RESONANT NETWORKS AND APPLICATIONS (9 hours)

UNIT IV - FUZZY SET THEORY (9 hours)

UNIT V - FUZZY LOGIC AND SYSTEMS (9 hours)
Fuzzy Logic: Classical logic, multi valued logic, fuzzy propositions, fuzzy quantifiers, linguistic hedges and their inferences.

REFERENCES

<table>
<thead>
<tr>
<th>EM2109</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIGITAL IMAGE PROCESSING</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Total Contact Hours – 45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisite :Nil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PURPOSE
Since image processing is an upcoming embedded field wherein many small systems and robots are built with image processing functions we give in this subject an idea of image processing concepts.

INSTRUCTIONAL OBJECTIVES
1. To learn basic Image processing operations and concepts.
2. To learn multi resolution analysis.
3. To study video processing.

UNIT I - FUNDAMENTALS OF IMAGE PROCESSING (9 hours)
Introduction - Steps in image processing systems - Image acquisition - Sampling and Quantization - Pixel relationships - Color fundamentals and models, File formats, Image operations – Arithmetic and Morphological.

UNIT II - IMAGE ENHANCEMENT (9 hours)

UNIT III - IMAGE SEGMENTATION AND FEATURE ANALYSIS (9 hours)
Detection of Discontinuities - Edge operators - Edge linking and Boundary Detection - Thresholding - Region based segmentation - Morphological Watersheds - Motion Segmentation.

UNIT IV - OBJECT RECOGNITION (10 hours)
Introduction – Pattern and Pattern Class – Selection Measurement Parameters – Approaches – Types of Classification – Bayes, Template matching, Non parametric density estimation, Neural Network approach – Applications.

UNIT V - VIDEO PROCESSING (8 hours)
Real time image and Video processing – parallelism – Algorithm simplification strategy – Hardware platforms – DSP, FPGA, GPU, General purpose processors.

REFERENCES
PURPOSE
Multimedia applications are coming into the arena of embedded systems. With future applications in mind this course on multimedia systems is offered.

INSTRUCTIONAL OBJECTIVES
1. To learn multimedia principles.
2. To learn knowledge and user understanding.
3. To study text, sound and image applications.

UNIT I - MULTIMEDIA (9 hours)

UNIT II - KNOWLEDGE AND USER UNDERSTANDING (9 hours)
Knowledge – Basic idea of knowledge – A working definition – Knowledge representation – Knowledge Elicitation – Know about user applying user knowledge – acquiring user knowledge – User profiling – User modeling.

UNIT III - INTERACTION, INTERFACE & SEMIOTICS (9 hours)

UNIT IV - TEXT AND SOUND (9 hours)
UNIT V - IMAGES (9 hours)

REFERENCES

EM2111

<table>
<thead>
<tr>
<th></th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP INTEGRATED CIRCUITS</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Total Contact Hours – 45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EM2008 / EM2009</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PURPOSE
To impart knowledge of VLSI implementation of DSP circuits.

INSTRUCTIONAL OBJECTIVES
1. To learn implementation of DSP in VLSI.

UNIT I - DSP IC’S AND VLSI CIRCUIT TECHNOLOGIES (9 hours)
Standard digital signal processors, Application specific IC’s for DSP, DSP systems, DSP system design, Integrated circuit design. MOS transistors, MOS logic, VLSI process technologies, Trends in CMOS technologies.

UNIT II - DIGITAL SIGNAL PROCESSING (9 hours)
UNIT III - DIGITAL FILTERS AND FINITE WORD LENGTH EFFECTS (9 hours)
FIR filters, FIR filter structures, FIR chips, IIR filters, Specifications of IIR filters, Mapping of analog transfer functions, Mapping of analog filter structures, Multirate systems, Interpolation with an integer factor L, Sampling rate change with a ratio L/M, Multirate filters. Finite word length effects -Parasitic oscillations, Scaling of signal levels, Round-off noise, Measuring round-off noise, Coefficient sensitivity, Sensitivity and noise.

UNIT IV - DSP ARCHITECTURES AND THEIR SYNTHESIS (9 hours)
DSP system architectures, Standard DSP architecture, Ideal DSP architectures, Multiprocessors and multicomputers, Systolic and Wave front arrays, Shared memory architectures. Mapping of DSP algorithms onto hardware, Implementation based on complex PEs, Shared memory architecture with Bit – serial PEs.

UNIT V - ARITHMETIC UNITS AND IC DESIGN (9 hours)
Conventional number system, redundant Number system, Residue Number System. Bit-parallel and Bit-Serial arithmetic, Basic shift accumulator, Reducing the memory size, Complex multipliers, Improved shift-accumulator. Layout of VLSI circuits, FFT processor, DCT processor and Interpolator as case studies.

REFERENCES
EM2112	REAL TIME SYSTEMS	L	T	P	C
Total Contact Hours – 45					
Prerequisite :Nil

PURPOSE
The concepts of real time systems and their analysis is very essential for embedded systems this course if offered.

INSTRUCTIONAL OBJECTIVES

1. To learn real time aspects of OS, memory communication of systems.
2. To study reliability evaluation methods.

UNIT I - INTRODUCTION TO TASK SCHEDULING (9 hours)

UNIT II - UNI AND MULTI PROCESSOR SCHEDULING (9 hours)

UNIT III - REAL TIME COMMUNICATION (9 hours)

UNIT IV - REAL TIME DATABASES (9 hours)
Basic Definition, Real time Vs General purpose databases, Main Memory Databases, Transaction priorities, Transaction Aborts, Concurrency control issues, Disk Scheduling Algorithms, Two-phase Approach to improve Predictability, Maintaining Serialization Consistency, Databases for Hard Real Time System.
UNIT V - REAL-TIME MODELING AND CASE STUDIES (9 hours)
Petrinets and applications in real-time modeling, Air traffic controller system – Distributed air defense system.

REFERENCES

<table>
<thead>
<tr>
<th>EM2113</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELECTRONIC PRODUCT DESIGN AND RELIABILITY ENGINEERING</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Total Contact Hours – 45
Prerequisite :Nil

PURPOSE
To impart knowledge on electronic product design focusing on EMC reliability and prototyping.

INSTRUCTIONAL OBJECTIVES
1. To study EMC principles.
2. To learn reliability techniques for electronic products.
3. To study prototype engineering.

UNIT I - EMISSION AND INTERFERENCE (8 hours)
Conducted, radiated emission – cross talk – shielding theory.

UNIT II - EMC TESTING AND DESIGN (10 hours)
UNIT III - RELIABILITY MATHEMATICS (8 hours)
Rules of probability – distribution functions – statistical confidence –
goodness of FIT – point process. - Statistical experiments.
Statistics and definitions – exponential, lognormal, Weibull distributions –
 system reliability - failure distribution functions - Prediction confidence and
assessing risk.

UNIT IV- ELECTRONIC SYSTEM RELIABILITY (9 hours)
Electronic products: definitions – failure physics – bath tub curve. Reliability
of electronic components: device failure modes – circuit and system aspects –
reliability in design – parameter variation and tolerances – design for
production, test and maintenance.

UNIT V-PRODUCT DESIGN (10 hours)
System design – design phases – design styles – design of safety critical
systems – design diversity – design for maintainability.
System engineering – architecturing and engineering judgment –
documentation – human interface – packaging and enclosures – grounding
and shielding - circuit design – circuit layout – power – cooling – product
integration, production and logistics.

REFERENCES
3. Patrick D.T. O’Connor, David Newton, Richard Bromley, “Practical

<table>
<thead>
<tr>
<th>MA2009</th>
<th>L T P C</th>
</tr>
</thead>
<tbody>
<tr>
<td>APPLIED MATHEMATICS (Embedded/ Communication Systems)</td>
<td>3 0 0 3</td>
</tr>
<tr>
<td>Total Contact hours – 45</td>
<td></td>
</tr>
<tr>
<td>Prerequisite: Nil</td>
<td></td>
</tr>
</tbody>
</table>

PURPOSE
To develop analytical capability and to impart knowledge in Mathematical and Statistical methods and their applications in Engineering and Technology and to apply these concepts in engineering problems they would come across.

INSTRUCTIONAL OBJECTIVES

1. At the end of the course, Students should be able to understand Mathematical and Statistical concepts, Discrete Fourier transform, Z transform, queueing theory concepts and apply the concepts in solving the engineering problems.

UNIT I – BOUNDARY VALUE PROBLEMS
(9 hours)
Solution of initial and boundary value problems - Characteristics - D'Alembert's Solution - Significance of Characteristic curves - Laplace transform solutions for displacement in a long string - a long string under its weight - a bar with prescribed force on one end - free vibration of a string.

UNIT II - SPECIAL FUNCTIONS
(9 hours)
Series solutions - Bessel's equation - Bessel Functions - Legendre's equation - Legendre Polynomials - Rodrigue's formula - Recurrence relations - Generating Functions and orthogonal property for Bessel functions of the first kind.

UNIT III – DISCRETE TRANSFORMS
(9 hours)

UNIT IV - RANDOM VARIABLES
(9 hours)
Review of Probability distributions - Random variables - Moment generating functions and their properties - Functions of Random variables.

UNIT V – QUEUEING THEORY
(9 hours)
Single and Multiple server Markovian Queuing models - Customer impatience - Queuing applications.

REFERENCES
1. Veerarajan T, "Mathematics IV", Tata McGraw Hill, 2000. (Unit II Chapter 3 Section 3.4 Unit I Chapter 5)
3. Sankara Rao K., "Introduction to Partial Differential Equations", PHI, 1995 (Unit II - Chapter 1, Section 1.3, Chapter 6 Section 6.13)
4. Veerajan T, "Probability, Statistics and Random Processes", 2004 (Unit IV - Chapter 1.2,3,4 Unit V - Chapter 5)

<table>
<thead>
<tr>
<th>VL2113</th>
<th>FUNDAMENTALS AND APPLICATIONS OF MEMS</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total Contact Hours – 45</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

Purpose

MEMS technology offers many exciting opportunities in miniaturization of elements in a wide range of applications. MEMS based sensors and actuators are constantly introduced into new products and new markets are expected to become affected by MEMS technology in the near future. The diversity and complexity of this technology demands a wide knowledge base from a prospect researcher. The goal of this course is to provide the student the needed background to comprehend existing technology, the tools to execute MEMS fabrication and the expertise to approach the development of new MEMS tools.

Instructional Objectives

1. To familiarize with MEMS Materials and Scaling Laws in Miniaturization.
3. To study Microsystems Fabrication Process.
4. To familiarize with Microsystems Design, Assembly and Packaging.
5. To explore on various Case Study of MEMS Devices.
UNIT I - OVERVIEW OF MEMS AND MICROSYSTEMS, MEMS MATERIALS AND SCALING LAWS IN MINIATURATION (9 hours)

UNIT II - ENGINEERING MECHANICS AND THERMOFLUID ENGINEERING FOR MICROSYSTEMS DESIGN (9 hours)

UNIT III - MICROSYSTEMS FABRICATION PROCESS (9 hours)

UNIT IV - MICROSYSTEMS DESIGN, ASSEMBLY AND PACKAGING (9 hours)
Micro system Design - Design consideration, process design, Mechanical design, Mechanical design using MEMS. Mechanical packaging of Microsystems, Microsystems packaging, interfacings in Microsystems packaging, packaging technology, selection of packaging materials, signal mapping and transduction.

UNIT V - CASE STUDY OF MEMS DEVICES (9 hours)
Case study on strain sensors, Temperature sensors, Pressure sensors, Humidity sensors, Accelerometers, Gyroscopes, RF MEMS Switch, phase shifter, and smart sensors. Case study of MEMS pressure sensor Packaging.
REFERENCES

<table>
<thead>
<tr>
<th>VL2112</th>
<th>L</th>
<th>T</th>
<th>P</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>RELIABILITY ENGINEERING</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Total Contact Hours – 45</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prerequisite : Nil</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PURPOSE
For any system reliability is an essential parameter. For evaluating reliability of designs, it is necessary to know reliability analysis methods.

INSTRUCTIONAL OBJECTIVES
1. To learn basics of reliability evaluation methods
2. To understand its application to electronic circuit.
3. To understand the various Failure modes of many electronic components.

UNIT I - RELIABILITY AND RATES OF FAILURE (9 hours)
Statistical distribution , statistical confidence and hypothesis testing , probability plotting techniques - Weibull, extreme value, hazard, binomial data; Analysis of load - strength interference, Safety margin and loading roughness on reliability.

UNIT II - STATISTICAL EXPERIMENTS (9 hours)
Statistical design of experiments and analysis of variance Taguchi method, Reliability prediction, Reliability modeling, Block diagram and Fault tree
Analysis, Petri Nets, State space Analysis, Monte Carlo simulation, Design analysis methods - quality function deployment, load strength analysis, failure modes, effects and criticality analysis.

UNIT III - ELECTRONIC SYSTEMS AND SOFTWARE RELIABILITY (9 hours)
Reliability of electronic components, component types and failure mechanisms, Electronic system reliability prediction, Reliability in electronic system design; software errors, software structure and modularity, fault tolerance, software reliability, prediction and measurement, hardware/software interfaces.

UNIT IV - RELIABILITY TESTING (9 hours)
Test environments, testing for reliability and durability, failure reporting, Pareto analysis, Accelerated test data analysis, CUSUM charts, Exploratory data analysis and proportional hazards modeling, reliability demonstration, reliability growth monitoring.

UNIT V - RELIABILITY IN MANUFACTURE AND MAINTENANCE (9 hours)
Control of production variability, Acceptance sampling, Quality control and stress screening, Production failure reporting; preventive maintenance strategy, Maintenance schedules, Design for maintainability, Integrated reliability programmes, reliability and costs, standard for reliability, quality and safety, specifying reliability, organization for reliability.

REFERENCES
PURPOSE

To train the students in preparing and presenting technical topics.

INSTRUCTIONAL OBJECTIVE

The student shall be capable of identifying topics of interest related to the program of study and prepare and make presentation before an enlightened audience.

The students are expected to give at least two presentations on their topics of interest which will be assessed by a committee constituted for this purpose. This course is mandatory and a student has to pass the course to become eligible for the award of degree. Marks will be awarded out of 100 and appropriate grades assigned as per the regulations.

PURPOSE

To undertake research in an area related to the program of study

INSTRUCTIONAL OBJECTIVE

The student shall be capable of identifying a problem related to the program of study and carry out wholesome research on it leading to findings which will facilitate development of a new/improved product, process for the benefit of the society.

M.Tech projects should be socially relevant and research oriented ones. Each student is expected to do an individual project. The project work is carried out in two phases – Phase I in III semester and Phase II in IV semester. Phase II of the project work shall be in continuation of Phase I only. At the completion of a project the student will submit a project report, which will be evaluated (end semester assessment) by duly appointed examiner(s). This evaluation will be based on the project report and a viva voce examination on the project. The method of assessment for both Phase I and Phase II is shown in the following table:
<table>
<thead>
<tr>
<th>Assessment</th>
<th>Tool</th>
<th>Weightage</th>
</tr>
</thead>
<tbody>
<tr>
<td>In- semester</td>
<td>I review</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>II review</td>
<td>15%</td>
</tr>
<tr>
<td></td>
<td>III review</td>
<td>35%</td>
</tr>
<tr>
<td>End semester</td>
<td>Final viva voce examination</td>
<td>40%</td>
</tr>
</tbody>
</table>

Student will be allowed to appear in the final viva voce examination only if he / she has submitted his / her project work in the form of paper for presentation / publication in a conference / journal and produced the proof of acknowledgement of receipt of paper from the organizers / publishers.
AMENDMENTS

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Details of Amendment</th>
<th>Effective from</th>
<th>Approval with date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>