DETAILED SYLLABUS FOR II M.B.B.S

PHarmacology

1. CURRICULUM

The curriculum has been designed as per MCI recommendations. MCI has allocated approximately 300 hours for teaching pharmacology over a period of three semesters. The theory classes would comprise of 125 hours of didactic teaching. The practical classes would comprise of 120 hours. The time allocated for the tutorials is approximately 60 hours. This will include seminars assignments and problem based learning.

GOAL:

The goal of teaching the 2nd year undergraduate students in Pharmacology is to impart a holistic knowledge of Pharmacology and inculcate a rational and scientific basis of therapeutics.

OBJECTIVES:

Knowledge:
At the end of the course the students shall be able to know
1. The general principles of actions and effects of various drugs and their kinetics.
2. Dose related effects of drugs.
3. Indications, contraindications, interactions and adverse effects of therapeutically used drugs.
4. The concept of essential drugs, the essential drug list of our country.
5. The importance of rational drug therapy.
6. To prescribe rationally based on the efficacy, safety and cost effectiveness for a particular disease depending on both individual and community needs.
7. To prescribe drugs in special situations such as pregnancy, lactation, infancy and old age.
8. To prescribe for mass therapy under National health programmes.
9. The drugs of addiction and the management of addiction.
10. Antidotes and drugs used in common poisoning.
11. The various environmental and occupational pollutants, their effects on human health and the management.
12. The different types of biomedical waste, their potential risks and the management of health hazards caused by them.
13. The ethics and modalities in the development of new drugs and the ethics in clinical practice and animal ethics.

Skills:
At the end of the course the student shall be able
1. To prescribe drugs for common ailments.
2. To recognize the side effects, adverse reactions and interactions of commonly used drugs.
3. Instruct patients how to use various drug delivery systems such as inhalers, nebulizers etc.
4. To calculate the dose of drugs according to age, body surface area, weight and associated diseases such as heart failure, renal and hepatic impairment.
5. To determine the rate of infusion of vital drugs such as dopamine, dobutamine, oxytocin and intravenous fluids.
6. To carry out experiments for the study of effect of drugs in animals and human volunteers.
7. To interpret the experimental data derived from various studies.
8. To critically evaluate the information on common pharmaceutical preparation (drug formulations).

Integration:
Simultaneous knowledge of physiology, pathology, clinical presentation and therapy of Common diseases will be imparted to the students by both horizontal and vertical Integrated teaching, seminars, group discussions and conferences.

UNIT – I

GENERAL PHARMACOLOGICAL PRINCIPLES: 12 Hours

1. Definition of Terms in Pharmacology:

 (Pharmacology, Drug, Pharmacokinetics, Pharmacodynamics, Pharmacy, Clinical pharmacology, Pharmacotherapeutics, Pharmacoeconomics, pharmacogenetics, Pharmacogenomics, chemotherapy, toxicology, pharmacoepidemiology, pharmacopoeia, placebo, chronopharmacology, ethno pharmacology, pharmacognosy and pharmacovigilance.

 Drug nomenclature (chemical name, non – proprietary name, brand name) Essential drug concept, Orphan drugs, National drug policy.

 Sources of drugs with examples (plants, animals, minerals, synthetic, micro-organisms, genetic engineering)

2. Routes of drug administration:
Enteral route --- Oral, buccal, sublingual, rectal route,
Parenteral route --- Intravenous, intramuscular, subcutaneous,
intradermal,
Intra-arterial, intra-articular, intrathecal, intraocular,
Inhalation (for local and for systemic effect).
Topical application (for local and for systemic effect)
Advantages and disadvantages of above mentioned
routes.

3. Special drug delivery systems:
Transdermal, ocusert, implants, osmotic pump, liposome encapsulation,
drug targeting and pro-drugs.

4. Pharmacokinetics:
Absorption - Structure and function of biological membrane,
different processes involved in absorption and
factors affecting drug absorption.
Bioavailability - Bioavailability, factors affecting bioavailability and
bioequivalence.
Distribution - Volume of distribution, redistribution, plasma protein
binding and tissue storage and barriers of
distribution (blood brain barrier, placental barrier)
Biotransformation - Metabolism of drugs – sites, phases – phase I (non –
synthetic), phase II (synthetic) with examples,
microsomal enzyme induction, inhibition and their
consequences, first pass metabolism and their effects
and enterohepatic circulation.
Elimination - Renal, rectal, pulmonary, biliary excretion, excretion
in breast milk, skin and salivary elimination, kinetics of
elimination, clearance, plasma half-life and its
clinical significance, loading dose, maintenance dose, steady
state concentration, therapeutic drug monitoring and
methods of prolonging the duration of action of a
drug.

5. Pharmacodynamics:
Principles of drug action (stimulation, depression, irritation,
replacement, cytotoxic action) mechanisms of drug action with examples:
(physical action, chemical action, through enzymes, through
receptors). Competitive antagonism, non – competitive antagonism. Receptor-
definition and types, agonist, antagonist, partial agonist, inverse agonist, ligand,
affinity, intrinsic activity (efficacy), drug action, drug effect. Transducer
mechanisms Receptor types, structure and function. Regulation of receptors, Dose-response relationship- potency, efficacy, selectivity.

Therapeutic index and therapeutic window, combined effect of drugs - synergism (additive, Supraadditive), antagonism (physical, chemical, physiological, receptor) - definitions with examples. Fixed drug combination - advantages, disadvantages with examples. Factors modifying drug action, tolerance (cross tolerance, tachyphylaxis,) drug resistance, cumulation.

6. Adverse drug reactions:
Classification, side effects, secondary effects, toxic effects, intolerance, idiosyncrasy, drug allergy, (types, treatment, examples) photosensitivity, drug toxicity - p glycoprotein, drug dependence, drug withdrawal reactions, teratogenicity, carcinogenicity, mutagenicity, drug induced diseases (iatrogenic disease) - definitions with examples.

7. Drug interactions:
Drug – Drug interactions, pharmacological basis of drug interactions, clinical Significance of drug interactions. Identifying potential drug interactions (outside the body, at site of absorption, during distribution, on receptors, during metabolism, drug excretion), drug food interactions and drug and body tissue interaction.

8. Bioassay
Definition, principles of bioassay and types of bioassay.

9. Clinical pharmacology and rational drug use
Adverse drug reaction monitoring and reporting Drug discovery and drug development – clinical drug development (techniques of discovery, models, preclinical studies in animals), ethics, informed consent, phases of clinical development (Phase 1, phase 2, phase 3, phase 4 (post marketing surveillance), types of clinical trials, design of trials, pharmacoepidemiology, pharmacovigilance and pharmacoconomics.

UNIT – II
DRUGS ACTING ON AUTONOMIC NERVOUS SYSTEM: 12 Hours

1. **General considerations** - Differences between somatic and autonomic nervous system, sympathetic and parasympathetic system, general outlay of autonomic nervous system, steps in neurohumoral transmission, co transmission.

2. **Cholinergic system** - cholinergic transmission, characteristics of muscarinic receptors, nicotinic receptors and cholinergic responses mediated. cholinergic drugs* - classification, cholinergic agonists - cholinomimetic alkaloids, anticholinesterase (reversible and irreversible), pharmacological actions and uses. Pharmacotherapy of glaucoma and myasthenia gravis and anticholinesterase (organophosphorous compounds) poisoning.

3. **Anticholinergic drugs*** - classification, atropine* (prototype), atropine substitutes* (mydriatics, antisecretory-antispasmodics, antiparkinsonian), atropine poisoning

4. **Drugs acting on autonomic ganglia** - clinically important ganglionic stimulants and ganglion blockers.

5. **Adrenergic transmission and its modification by drugs.** Adrenergic receptors & adrenergic responses mediated
Adrenergic drugs* - classification, (Catecholamines, adrenaline*, nor adrenaline, dopamine) and non catecholamines, β agonists), pressor agents, cardiac stimulants, bronchodilators, nasal decongestants, CNS stimulants, anorectics, uterine relaxants and vasodilators.

6. **Anti-adrenergic drugs*** - classification, α blockers* - (Phenoxybenzamine as prototype),
 β blockers* - (Propranolol* as prototype)
 α & β blockers - (Labetalol)

* mechanism of action, pharmacological actions, adverse drug reactions, precautions, contraindications, preparations, drug interactions, therapeutic uses/indications.

UNIT - III:
SKELETAL MUSCLE RELAXANTS: 1 Hour

1. Peripheral neuromuscular blockers *- classification*
2. Centrally acting muscle relaxants.
3. Directly acting muscle relaxants.

UNIT IV:
LOCAL ANAESTHETICS: 1 Hour
Classification, mechanism and actions of local anaesthetics, synergism with vasopressors, adverse effects, indications, contraindications and complications of different routes of administration of local anaesthetics.

UNIT – V:
AUTACOIDS AND RELATED DRUGS: 9 Hours
Definition, the various autacoids, their physiological and pathological actions and effects.
1. Histamine actions, releasers, anaphylaxis, clinical significance of histamine, betahistine.
 Conventional H1 antihistamines* - classification,
 Second generation H1 antihistamines*,
 Drug therapy of vertigo and motion sickness.
2. 5HT(serotonin) – 5HT agonists and antagonists (pharmacological actions, preparations and therapeutic uses).
 Ergot alkaloids - preparations and uses.
 Pharmacotherapy of migraine.
4. Angiotensin and ACE inhibitors* and angiotensin receptor antagonist.
5. Lipid derived autacoids – eicosanoids (prostaglandins*, leukotrienes) and platelet activating factor, PAF antagonists – clinical significance, preparations and uses.

* mechanism of action, pharmacological actions, adverse drug reactions, precautions, contraindications, preparations, drug interactions, therapeutic uses/indications

UNIT – VI
DRUGS ACTING ON THE CENTRAL NERVOUS SYSTEM: 18 Hours
Physiological role of neuro transmitters (excitatory, inhibitory), principles of neuronal regulation and basis of drug action in the CNS.

4. **Antiepileptic drugs** – Classification of drugs* Pharmacotherapy of epilepsy, Management of status epilepticus.

5. **Drugs for CNS degenerative disorders.**
 Drugs for Parkinsonism – classification of drugs*, pharmacotherapy of alzheimer’s disease, huntington’s disease, motor neuron disease.

6. **Antipsychotic drugs** – Classification* (chlorpromazine* prototype) Atypical Antipsychotics* Pharmacotherapy of Schizophrenia. Antianxiety drugs – Classification* Sedating, non sedating antianxiety drugs, Pharmacotherapy of anxiety. Antidepressant drugs – Classification* (Imipramine* prototype) MAO inhibitors Selective serotonin reuptake inhibitors (SSRI’s) Antimanic drugs – Lithium* and others.

7. **Opioid Analgesics** – Classification* (Morphine* prototype) Management of acute morphine poisoning, Other opioids, partial agonists, agonist - Antagonists, Pure antagonists, Management of opium dependence

8. **Drug addiction and drug abuse.**

 *mechanism of action, pharmacological actions, adverse drug reactions, precautions, contraindications, preparations, drug interactions, therapeutic uses/indications.

UNIT – VII

DRUGS ACTING ON CARDIOVASCULAR SYSTEM : 8 Hours

1. **Drugs affecting renin angiotensin system**- angiotensin converting enzyme inhibitors - captopril (prototype)*, angiotensin receptor antagonist losartan (prototype)*

3. **Drug therapy of arrhythmias** – Classification*, preparations, classes, mechanism of action, indications. Torsades de pointes.

4. **Lipid lowering drugs for the treatment of hypercholesterolemia** – Classification, Mechanism of action, pharmacological actions, adverse effects, contraindications drug interactions and uses.

5. **Drug therapy of Hypertension** – Classification*, angiotensin converting enzyme inhibitors, angiotensin receptor antagonist, calcium channel blockers,
diuretics, beta blockers, alpha blockers, vasodilators, central sympatholytics.

Management of hypertensive emergencies

6. **Drugs for myocardial ischaemia** – Classification*, rationale of combination therapy in angina pectoris, role of antiplatelet drugs. Drug treatment of myocardial infarction.

7. **Drugs used in peripheral vascular diseases.**

* mechanism of action, pharmacological actions, adverse drug reactions, precautions, contraindications, preparations, drug interactions, therapeutic uses/indications.

UNIT – VIII

DRUGS ACTING ON WATER, ELECTROLYTES AND DRUGS AFFECTING RENAL FUNCTION: 4 Hours

1. **Water and electrolytes** – transport, imbalance, effects and management.
2. **Nutritional supplementation** – enteral and parenteral therapy.
3. **Diuretics** – Classification*, role of diuretics in acute renal failure and forced alkaline diuresis, site of action pattern of electrolye excretion, short term and long term side effects and therapeutic uses.
4. **Antidiuretics** - Vasopressin (antidiuretic hormone) and vasopressin analogues)*

UNIT – IX

DRUGS ACTING ON THE BLOOD AND THE BLOOD FORMING ORGANS: 6 Hours

1. **Hematinics** (Iron, vitamin B12 & folic acid)*, minerals (trace elements) and vitamins and clinical significance, preparations, uses, treatment of iron deficiency anemia, disadvantages of shotgun antianemic preparations, megaloblastic anemia, iron poisoning. Erythropoietin* and other growth factors.
2. **Coagulants** – Vitamin K*, fibrinogen and styptics.
3. **Anticoagulants** – Classification* thrombolytics*, antifibrinolytics and sclerosing agents
4. **Plasma expanders and blood transfusion** - Chemistry, pharmacokinetics, preparations, dosage and uses, adverse effects.
5. **Drugs induced blood dyscrasias.**
6. **Drugs used in the management of shock.**

UNIT – X
DRUGS ACTING ON RESPIRATORY SYSTEM: 3 Hours

1. **Drugs for cough** – Classification * Principles of choosing appropriate cough remedies, expectorants, mucolytics, antitussives, preparations and uses.
2. **Drugs for bronchial asthma** – Classification*, Principles governing the selection of drugs in bronchial asthma, inhaled asthma medication, precautions to be taken during their use. Management of acute attacks, prophylaxis and status asthmaticus.

* mechanism of action, pharmacological actions, adverse drug reactions, precautions, contraindications, preparations, drug interactions, therapeutic uses/indications.

UNIT – XI

HORMONES AND HORMONE ANTAGONISTS: 12 Hours

1. **Hormones** – Definition, different types and their mechanism of action.
2. **Anterior pituitary hormones** – Regulation of secretion, preparations and uses. Importance of drug induced alterations in prolactin levels.
3. **Thyroid hormones** – Levo thyroxine*, antithyroid drugs*- classification, preparations and uses.
5. **Glucagon** – actions, uses.
9. **Drugs affecting calcium balance**: Calcium parathyroid hormone, calcitonin, Vitamin D, preparations, uses. Bisphosphonates – actions, uses, Pharmacotherapy of osteoporosis.
UNIT – XII

GASTRO INTESTINAL DRUGS: 6 Hours

1. **Drugs used for the control of gastric acidity, digestants, antiflatulents.**
 Drug treatment of peptic ulcer* - classification (H2 blockers*, proton pump inhibitors*, prostaglandin analogs, antacids, ulcer protectives).
 Treatment of helicobacter pylori infection.

2. **Emetics, antiemetics*, prokinetic drugs – Classification*, mechanism of action, actions, adverse drug reaction, uses & drug interactions.
 Treatment of gastroesophageal reflux disease.

3. **Drug treatment of gallstones.**

4. **Agents used for constipation** – classification, laxatives, purgatives and hazards of purgatives.

5. **Drugs used in diarrhea** – indications for the use of antimitotility agents*, antimicrobial agents and antisecretory agents and oral rehydration powder. Drugs used in therapy of inflammatory bowel disorders.

* mechanism of action, pharmacological actions, adverse drug reactions, precautions, contraindications, preparations, drug interactions, therapeutic uses/indications.

UNIT – XIII

CHEMOTHERAPY OF MICROBIAL DISEASES: 18 Hours

 Prophylactic use of Antimicrobials – indications with examples, causes for the failure of chemotherapy.

2. **Sulfonamides*** - preparations, cotrimoxazole*

4. **Beta lactum antibiotics**: classification,
 Penicillins* (including semisynthetic, Acid resistant, penicillinase resistant, Extented spectrum), Beta lactamase inhibitors,
 Cephalosporins*,monobactams*, carbapenems*.

5. **Tetracyclines** and **chloramphenicol***.
6. **Aminoglycosides*** - classification.
8. **Pharmacotherapy of urinary tract infection**, **urinary antiseptics**,
9. **Pharmacotherapy of sexually transmitted diseases**.
10. **Antitubercular drugs*** – classification, first line drugs*,
11. **Second line drugs**, **newer drugs**, antitubercular drug regimens, management of Adverse Drug Reaction with antitubercular drugs, chemoprophylaxis, tuberculosis in AIDS, pregnancy, breast feeding, drugs used in Atypical Mycobacteria.
12. **Antileprotic drugs*** - Classification, Pharmacotherapy, drug regimen (MDT), Alternative regimens, management of lepra reactions, newer drugs.
13. **Antifungal drugs**: Classification*, local, systemic mycoses management.
15. **Anti malarial drugs***: Classification, different forms of anti malarial therapy, management of cerebral malaria, radical cure, malaria prophylaxis, resistant malaria.
16. **Antiamoebic drugs**: Classification*, drugs for giardiasis.
17. **Drugs for trichomoniasis**,
18. **Drugs for leishmaniasis (kalazar)**.
19. **Anthelmintics**: classification*, choice of drugs for various worm infestation.
20. **Antifilarial drugs***.

*Chemistry, spectrum of activity, mechanism of action, Pharmacokinetics, Preparations, adverse effects, interactions, precautions, uses.

UNIT – XIV

CHEMOTHERAPY OF NEOPLASTIC DISEASES: 3 Hours

Anticancer drugs: Classification, general toxicity, general principles in chemotherapy of malignancy, cell cycle, toxicity amelioration.

UNIT – XV

DRUGS USED FOR IMMUNOMODULATION: 2 Hours

1. **The immune response**

 General principles of immunosuppressive therapy, immunosuppressants*,
 Immunostimulants – BCG, Peptides, Immunoglobulins, Cytokines
(Interferon -α, Interleukin-2, Levamisole).

2. **Immune mechanism and drug allergy.**

UNIT - XVI

TOXICOLOGY: 3 Hours

1. **Heavy metals and antagonists** – Lead, Arsenic, cadmium, Mercury poisoning and Management.
 Antagonists* (eg- dimercaprol)
3. **Nonmetallic environmental toxicants and occupational toxicology:**
 - **Air pollution** by Carbon monoxide, Hydrogen sulphide, Sulphur dioxide, Nitrogen dioxide.
4. **Management of over dosage** with commonly used therapeutic agents.
5. **Bio medical waste** – types, potential risks and their safe management.

UNIT – XVII

DERMATO PHARMACOLOGY: 1 Hour

1. **Skin and mucous membrane (dermatological pharmacology)** Systemic treatment – Corticosteroids, antibiotics, antihistamines, Immunosuppressants – indications.
 Topical treatment: Calamine lotion, creams, emollients, antifungal agents, Sunscreens - reflectors, absorbents – indication, advantages, disadvantages,
 Pharmacotherapy of scabies and pediculosis.

UNIT XVIII

Ocular pharmacology: 1 Hour

UNIT XIX

GENE THERAPY - principles and uses: 1 Hour

UNIT XX

MISCELLANEOUS DRUGS:4 Hours

1. **Enzymes in therapy.**
2. **Antiseptics and disinfectants**, definition, indications, advantages and disadvantages with examples in different groups.
3. **Vitamins and food supplements** *Vitamin B-complex - (B1 (thiamine), B2 (Riboflavin), B3 (nicotinic acid), B6 (Pyridoxine), biotin, Vitamin C*, Vitamin A*, Vitamin E*, Vitamin K*, zinc, spirulina, - indications.

4. **Vaccines and sera typhoid vaccine**, hepatitis A, B vaccine, rabies vaccine, varicella vaccine, indications, dosage and administration, adverse effects, interactions, contraindications, special precautions. *Physiological functions, symptoms and signs of deficiency, preparations, hypervitaminosis, side effects, therapeutic uses.*

<table>
<thead>
<tr>
<th>Practical</th>
<th>Tutorial/assignment/ seminar</th>
<th>Problem based learning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Pharmacology Practicals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Routes of drug administration</td>
<td>Routes of drug administration & Special drug delivery systems</td>
<td></td>
</tr>
<tr>
<td>Sources of drugs</td>
<td>Pharmacokinetics & pharmacodynamics</td>
<td></td>
</tr>
<tr>
<td>Sources of drug information</td>
<td>Adverse Drug Reactions & Drug Interactions</td>
<td></td>
</tr>
<tr>
<td>Dosage forms/ formulations</td>
<td>Myasthenia gravis</td>
<td>Myasthenia gravis</td>
</tr>
<tr>
<td>Guidelines to the use of animals</td>
<td>Pharmacotherapy of Glaucoma</td>
<td>Glaucoma</td>
</tr>
<tr>
<td>Study of effects of drugs on rabbit eye – Pilocarpine/Atropine/ Phenylephrine/ Lignocaine</td>
<td>Adrenergic and anti adrenergic drugs</td>
<td>Anticholinergic drugs</td>
</tr>
<tr>
<td>Essential drug concept</td>
<td>Skeletal muscle relaxants & Local anaesthetics</td>
<td>Local Anaesthetics</td>
</tr>
<tr>
<td>P-Drug concept</td>
<td>Autacoids</td>
<td></td>
</tr>
<tr>
<td>Clinical Pharmacology charts</td>
<td>NSAIDs</td>
<td></td>
</tr>
<tr>
<td>Effect of General Anaesthetics on</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rat</td>
<td>General Anaesthetics</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Study of Skeletal muscle relaxation by diazepam in mice</td>
<td>Sedative – hypnotics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Psychopharmacology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Opioid analgesics & Antiepileptics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drug therapy of heart failure</td>
<td></td>
</tr>
<tr>
<td>Dosage Calculations</td>
<td>Pharmacotherapy of Hypertension</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anti Arrhythmic & Drugs for myocardial ischemia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diuretics & Anti Diuretics</td>
<td></td>
</tr>
<tr>
<td>Problem solving exercises</td>
<td>Coagulants and Anticoagulants</td>
<td></td>
</tr>
<tr>
<td>Prescription writing</td>
<td>Bronchial asthma</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drugs Acting on Respiratory System</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hormones</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drugs acting on uterus</td>
<td></td>
</tr>
<tr>
<td>Prescription Audit</td>
<td>Peptic Ulcer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drugs used in constipation and diarrhoea</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drugs Acting on GIT</td>
<td></td>
</tr>
<tr>
<td>Pharmacoeconomic problems</td>
<td>Chemotherapy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sulfonamides & Quinolones</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Beta lactum antibiotics, Tetracyclines and chloramphenicol</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pharmacotherapy of tuberculosis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pharmacotherapy of Leprosy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Macrolides, anti fungal, anti viral drugs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Antimalarial & Antiamoebic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemotherapy of neoplastic diseases</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Poisoning,</td>
<td></td>
</tr>
</tbody>
</table>
INTEGRATED TEACHING

Common Areas Integrated Teaching Of Pharmacology In Collaboration With Pre, Para And Clinical Departments

<table>
<thead>
<tr>
<th>Topics</th>
<th>Collaborating Departments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drugs in Anaesthetic practice</td>
<td>Anaesthesia</td>
</tr>
<tr>
<td></td>
<td>Surgery</td>
</tr>
<tr>
<td></td>
<td>Opthalmology</td>
</tr>
<tr>
<td>Drugs in Psychiatry</td>
<td>General medicine</td>
</tr>
<tr>
<td></td>
<td>Psychiatry</td>
</tr>
<tr>
<td></td>
<td>Pediatrics</td>
</tr>
<tr>
<td>Principles of rational use of drugs</td>
<td>Medicine</td>
</tr>
<tr>
<td></td>
<td>Surgery</td>
</tr>
<tr>
<td></td>
<td>Obstetrics & Gynaecology</td>
</tr>
<tr>
<td></td>
<td>Pediatrics</td>
</tr>
<tr>
<td>Therapy of hypertension</td>
<td>Physiology</td>
</tr>
<tr>
<td></td>
<td>Cardiology</td>
</tr>
<tr>
<td></td>
<td>Medicine</td>
</tr>
<tr>
<td></td>
<td>Pathology</td>
</tr>
<tr>
<td></td>
<td>OB&G</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>Medicine</td>
</tr>
<tr>
<td></td>
<td>Pathology</td>
</tr>
<tr>
<td></td>
<td>OB&G</td>
</tr>
<tr>
<td></td>
<td>Opthalmology</td>
</tr>
<tr>
<td></td>
<td>Surgery</td>
</tr>
<tr>
<td>Peptic Ulcer disease</td>
<td>Medicine</td>
</tr>
<tr>
<td></td>
<td>Physiology</td>
</tr>
<tr>
<td></td>
<td>Surgery</td>
</tr>
<tr>
<td>Congestive heart failure</td>
<td>Medicine</td>
</tr>
<tr>
<td></td>
<td>Cardiology</td>
</tr>
<tr>
<td>Therapy of Bronchial asthma</td>
<td>Medicine</td>
</tr>
</tbody>
</table>
II M.B.B.S- DISTRIBUTION OF CHAPTERS IN THE UNIVERSITY EXAMINATION

PAPER I

1) General pharmacology.
2) Pharmacology of ANS, Skeletal muscle relaxants, local anaesthetics.
3) Pharmacology of Autocoids.
4) Pharmacology of CNS, Local anesthetics and skeletal muscle relaxants.
5) Pharmacology of CVS.
6) Pharmacology of blood and blood formation.
7) Pharmacology of renal system.

PAPER II

1) Chemotherapy of microbial diseases.
2) Chemotherapy of malignancy.
3) Immunopharmacology
4) Endocrine system.
5) Pharmacology of respiratory system.
6) Pharmacology of GIT.
7) Oculo Pharmacology
8) Gene therapy
9) Miscellaneous: Drugs acting on skin and mucous membranes, toxicology, Antiseptics, disinfectants, ectoparasiticides, vitamins, enzymes in therapy, vaccines & sera.

UNIVERSITY PRACTICALS

DISTRIBUTION OF MARKS FOR PRACTICAL EXAMINATION

PRACTICAL - I TOTAL - 80 MARKS
1. Prescription writing - 10 marks
2. Prescription audit/CCR (criticize, correct and rewrite the prescription) - 10 marks
3. Clinical problem solving exercise - 10 marks
4. Dosage calculation including pharmacoeconomic problems - 10 marks

PRACTICAL - II

1. Experimental pharmacology – (Animal Experiment) - 20 marks
2. Qualitative/Quantitative experimental charts - 10 marks
3. Clinical pharmacology charts – 10 marks

BOOKS RECOMMENDED

2. Essentials of Medical Pharmacology, K.D. Tripathi

REFERENCE BOOKS:

2. Oxford textbook of clinical Pharmacology and drug therapy, Grahame – Smith D.G.
3. The Pharmacological basis of therapeutics, Goodman & Gilman’s.
4. Modern Pharmacology with clinical applications, Craig, Charles R.
5. Lippincott’s illustrated Reviews Pharmacology, Harvey, Richard A. Champe.
6. Integrated Pharmacology, Page, Clive et al.
7. Textbook of Pharmacology, S.D. Seth.
PATHOLOGY

HIGHLIGHTS:

The Curriculum has been designed as per MCI recommendations. Care has been taken to emphasize clinically oriented teaching of Pathology. The obsolete practical exercises have been eliminated and newer teaching methodologies like Problem Based Learning have been incorporated. An effort has also been made to give more emphasis to the interpretive aspects then technical aspects.

MCI has allocated approximately 300 hours for teaching Pathology over a period of three semesters. Of this, not more than 100 hours is recommended to be utilized for didactic teaching. The rest of the allocated hours are meant for practicals / integrated teaching and tutorials. These recommendations have been taken into consideration while designing the curriculum. The allocation of marks for summative examination and internal assessment is as per MCI recommendation.

1. Curriculum

The Theory component would comprise of 100 hrs of didactic teaching, which will be clinically integrated as far as possible. It was also decided to include a brief outline of each lecture so as to make the lectures uniform.

The practical classes will comprise of 120 hrs (60X2 hrs each) of exercises. It was decided to eliminate obsolete practical exercises and to concentrate on those tests, which can be performed by the house officers in the side lab and also on interpretation of values.

The exercises to be performed include smear study; estimation of Haemoglobin, Blood grouping/typing, urine analysis by strips and conventional methods, interpretation of charts, image quiz, slide and specimen demonstrations.
The time allocated for the tutorials is approximately 90 hrs. This will include Seminars, assignments and Problem Based Learning (PBL).

As a part of learning exercises and to promote self-study, Problem Based Learning (PBL), which is clinically integrated, is to be introduced. These will involve small group discussion and will be part of internal assessment. These will be conducted in three sessions of 2 hrs each.

2. DETAILED SYLLABUS:

INTRODUCTION

- Historical aspects; definition of terms; introduction to pathology, its applications and role in patient management
- Cellular responses to stress & noxious stimuli, cellular adaptation of growth & differentiation (hyperplasia, hypertrophy, atrophy & metaplasia)
- Cell injury and cell death (cause & mechanism of reversible & irreversible injury)
 - Morphology of cell injury (reversible & necrosis), examples of cell injury and necrosis (ischaemic, hypoxic, reperfusion and chemical injuries)
- Apoptosis and sub-cellular responses to injury
- Intracellular accumulation, calcification & cellular aging; (Lipid, protein, glycogen and pigment accumulation; pathologic calcification; ageing)

INFLAMMATION/REPAIR

- Introduction to body’s immune response (innate & adaptive immunity; cells and tissues of immune system; cytokines; structure & function of HLA)
- General features of inflammation; history; stimuli for acute inflammation; vascular events; cellular events – leucocyte adhesion and transmigration
- Continuation of cellular events (chemotaxis, phagocytosis, defects of leucocyte function); termination of acute inflammatory response; outcome of acute inflammation; morphological patterns of acute inflammation;
- Chemical mediators (vaso-active amines; plasma proteins; AA metabolites; PAF; cytokines; chemokines;leucotriences; NO; free radicals & neuropeptides)
- Chronic inflammation (cause, morphological features; cells of chronic inflammation; granuloma; systemic effects of inflammation; consequences of excessive/defective inflammation)
- Repair (healing; scar formation; cutaneous wound healing; healing at special sites; factors affecting wound healing)

HAEMODYNAMIC DISTURBANCES

- Oedema, hypotension, congestion, haemorrihage & haemostasis
Thrombosis & embolism
Infarction, Shock

GENETIC DISORDERS
- Normal karyotype; cytogenetic disorders (autosomal & X – chromosomal disorders)
- Mutation; Mendelian disorders (Transmission pattern, biochemical & molecular basis of single gene disease; principles of multifactorial inheritance)
- Genetic disorders affecting structural protein, receptor protein, enzymes and regulatory proteins; Single gene disease with non-classical inheritance (mitochondrial gene mutation, genomic imprinting, molecular diagnosis)

IMMUNITY
- Disorders of immunity – mechanisms of hypersensitivity
- Autoimmunity – SLE
- Rheumatoid arthritis, systemic sclerosis, Sjogren’s MCD, Amyloidosis
- Primary & secondary immunodeficiency

NEOPLASIA
- Definition, nomenclature, biology of tumour growth, differences between benign & malignant tumours, tumour spread & epidemiology
- Molecular basis of neoplasia (essential alterations for malignant transformation, oncogenes, suppressor genes)
- Evasion of apoptosis; defects in DNA repair, telomerase and angiogenesis; invasion & metastasis; dysregulation of genes
- Carcinogenesis (carcinogenic agents, molecular basis of carcinogenesis)
- Host defense, tumour immunity, clinical features, and laboratory diagnosis.

INFECTIOUS DISEASES
- General principles (categories, transmission & dissemination of microbes, mechanisms of microbial disease, immune evasion, infections in immunosuppressed hosts, tissue response to microbes)
- Pathology of common viral & bacterial infections (CMV, EBV, HPV, hepatitis viruses, gram positive & negative bacterial infections)
- Mycobacterial infections, - tuberculosis
- Leprosy, syphilis and others
- Fungal & parasitic infections

ENVIRONMENTAL/NUTRITIONAL
- Environmental diseases
- Nutritional diseases
INFANCY & CHILDHOOD DISEASE
- Congenital anomalies, birth weight, gestational age, birth injuries, perinatal infections, ARDS, necrotizing enterocolitis, foetal hydrops. Inborn errors of metabolism, SIDS, childhood tumours.

SYSTEMIC PATHOLOGY – DISEASES OF THE ORGAN SYSTEMS
RBC & BLEEDING DISORDERS
- Development of haematopoietic cells, bone marrow, classification of anaemia
- Anaemia of blood loss, Nutritional anaemias
- Anemia of chronic disease, aplasia, other forms of impaired production
- Haemolytic anaemia – classification, membrane defects, enzyme defects
- Acquired haemolytic anaemia, polycythaemia
- Haemoglobinopathies – Hb S, E, C & thalassaemia
- Bleeding disorders – classification, disorders of platelets, coagulation disorders

WBC, LYMPH NODE, SPLEEN
- Non-neoplastic quantitative and qualitative disorders of leucocytes
- Leukaemia – classification, aetiology, actue leukaemias
- Chronic leukaemias, MDS, other chronic myelo-proliferative disorders including myelofibrosis
- Non – neoplastic disorders of lymph node, spleen & thymus; classification of lymphoma
- Hodgkin Lymphoma & NHL
- Non-Hodgkin lymphoma (cont d) & Plasma cell dyscrasias
- Blood bankin

BLOOD VESSELS
- Atherosclerosis and Hypertension
- Vasculitis, Congenital anomalies, aneurysms and tumours.

THE HEART
- Ischaemic heart disease & myocardial infarction
- Rheumatic fever
- Infective endocarditis; diseases of the pericardium
- Congenital heart disease, diseases of the myocardium, tumours, of the heart

THE LUNG
- Atelectasis , acute lung injury, ARDS, acute interstitial pneumonia
- COPD – emphysema, bronchial asthma, bronchiectasis
Diffuse interstitial diseases (infiltrative, restrictive) – fibrosing diseases (mainly pneumoconiosis), sarcoidosis, pulmonary eosinophilia, smoking related diseases
Pulmonary infections – Pneumonias
Tumours of lung & Diseases of pleura

HEAD AND NECK
Benign and malignant lesions of head and neck including oral cavity, salivary glands

GIT
Oesophagus – Congenital anomalies, motor dysfunction, GERD and tumours
Gastritis and Peptic ulcer
Tumours of stomach
Congenital anomalies of intestine, Malabsorption syndromes & Enterocolitits
IBD – Crohn’s & Ulcerative colitis
Tumours of small & large intestine, diseases of appendix & peritoneum.

LIVER BILLIARY TRACT
General features of liver disease (patterns of hepatic injury, jaundice, portal hypertension, hepatic failure, liver function tests)
Infectious diseases of liver
Alcoholic liver disease, cirrhosis, metabolic liver disease
Intrahepatic biliary tract lesions and tumours, diseases of gallbladder – cholecystitis, choleithiasis, tumours.

PANCREAS
Acute & chronic pancreatitis and tumours

KIDNEY
Normal structures, congenital anomalies, cystic disease, laboratory tests in renal disease
Nephritic Syndrome – pathogenesis and pathology
Nephritic Syndrome – pathogenesis and pathology
Diseases of tubules and interstitium, diseases of blood vessel, urolithiasis, hydronephrosis
Tumours of the kidney, renal pelvis and urinary bladder

MALE GENITAL TRACT
Congenital anomalies & tumours of penis, BPH & tumours of prostate
Testis – infertility, atrophy, tumours

FEMALE GENITAL TRACT
- Infections of FGT, lesions of vulva and vagina, Diseases of cervix
- Endometrium – DUB, inflammation, endometriosis, adenomyosis, endometrial hyperplasia and polyps, tumours of endometrium, myometrium and fallopian tube
- Ovary – non-neoplastic lesions of ovary, classification & pathology of ovarian tumours
- Diseases of placenta

BREAST
- Benign lesions of the breast
- Malignant lesions of the breast

ENDOCRINE SYSTEM
- Diseases of pituitary gland, parathyroid, pineal gland & MEN
- Benign & malignant lesions of thyroid
- Diseases of Adrenals
- Diabetes mellitus

SKIN
- Diseases of the skin

BONE & JOINTS
- Infections, metabolic disease of bone
- Bone tumours
- Diseases of joints

SOFT TISSUE & MUSCLE
- Diseases of soft tissue & muscle

CNS & SPECIAL SENSES
- Infections, degenerative disorders of CNS, CSF analysis
- Tumours of brain & spinal cord
 - Special senses

Practical Exercises
1. Histopathology/cytology slides – spotters
2. Gross specimens – spotters
3. Haematology slides – spotter
4. Description of slides and specimens
5. Image Quiz
6. Haemoglobin estimation
7. Peripheral smear staining & differential count
8. Blood grouping/typing
9. Blood and bone marrow charts
10. Urinalysis (using reagents and urine strips)
11. Instruments – spotters
12. Demonstrations
 a. Specimens and instruments
 b. ESR
 c. PCV
 d. Osmotic fragility
 e. BT/CT/PT/APTT
 f. Cell counter

BOOKS RECOMMENDED
2. Pathology by Rubin and Faber
3. Basic Pathology by Robbins
4. Pathologic Basis of the Disease by Robbins
5. Text book of Haematology by Shirley Mckenzie
6. Essential Haematology by A V Hoffbrand

MICROBIOLOGY

CURRICULUM

Goal

The broad goal of the teaching of undergraduate students in Microbiology is to provide an understanding of the natural history of infectious diseases in order to deal with the etiology, pathogenesis, laboratory diagnosis, treatment, control and prevention of infections in the community.

Objectives

Knowledge

At the end of the course the student will be able to:

i) state the infective micro-organisms of the human body and describe the host - parasite relationship.

ii) list the pathogenic microorganisms (Bacteria, Viruses, Parasites, Fungi) and describe the pathogenesis of the diseases produced by them.

iii) state or indicate the modes of transmission of pathogenic and opportunistic organisms and their sources including insect vectors responsible for transmission of infection.
iv) describe the mechanisms of immunity to infections.

v) acquire knowledge on suitable antimicrobial agents for treatment of infections and scope of immunotherapy and different vaccines available for prevention of communicable diseases.

vi) apply methods of disinfection and sterilization to control and prevent hospital and community acquired infections.

vii) recommend laboratory investigations regarding bacteriological examination of food, water, milk, and air.

Skills

At the end of the course the student will be able to:

i. operate and use the light compound microscope.

ii. to employ aseptic and sterile precautions while performing simple invasive procedures such as venepuncture etc.

iii. collect and transport appropriate clinical materials with necessary precautions for the laboratory diagnosis of infectious diseases.

iv. to perform common laboratory techniques (as given below) for the direct demonstration of micro-organisms from clinical materials and interpret their findings.
 - Wet preparation for Trichomonas vaginalis.
 - KOH preparation for the identification of fungal elements.
 - Saline and iodine preparations and concentration methods for parasites and demonstration of trophozoites, ova or cysts in stool samples.

v. prepare and stain peripheral blood for screening malarial parasites and microfilariae.

vi. prepare a smear and perform Gram stain on body fluids, urine and pus specimens.

vii. prepare a smear and perform Ziehl – Nielsen stain for demonstration of Mycobacteria especially from sputum.

viii. perform and interpret cold staining techniques on skin smear for demonstration of M. leprae.

ix. interpret results of microbiological tests including antimicrobial testing for the diagnosis of common infectious diseases.

x. to perform and interpret a skin test.

xi. perform simple standard rapid tests for diagnosis of infectious diseases.

xii. to organize the safe handling and disposal of infectious waste.

Integration

The student will have integrated knowledge of Infectious diseases - pathogenicity, clinical features, immunological features, laboratory diagnosis, epidemiology and control of diseases in the community by proper immunization
procedures. This will be achieved through integrated teaching involving other non clinical and clinical departments.

Detailed Syllabus

I. General Microbiology

Historical introduction
- Contribution of various scientists to Microbiology
- Discovery of various pathogenic bacteria and viruses
- History of vaccination, Immunology, Antimicrobials
- Emerging and Re-emerging Infectious diseases

Microscopy
- Principle, components, specifications, advantages and disadvantages and use in diagnostic Microbiology.
- The Light Microscope, Dark ground Microscope, Phase Contrast Microscope, Fluorescent Microscope and Electron Microscope.
- Specialized types of Microscopes- Interference microscope, Polarization microscope. Recent advances in Microscopy.

Staining of bacteria
- Simple stains, Negative staining, Impregnation staining
- Differential staining – Gram stain, Acid fast stain
- Special stains – Albert’s stain, Wayson’s bipolar staining

Bacterial morphology
- Shape and arrangement of Bacteria
- Structure of Bacterial cell
- Nutrition and growth of bacteria
- Growth and Multiplication of Bacteria
- Bacterial growth curve
- Bacterial nutrition – nutrients required for bacterial growth
- Oxygen requirement, Carbon dioxide requirement, Temperature requirement
- Effects of Moisture, H-ion concentration, Light, Osmotic effect and Mechanical stress on Bacterial growth

Culture media and cultivation of bacteria
- Basic requirements of culture media
- Types of Media

Identification of bacteria and bacterial classification
Morphology, staining reactions, culture characteristics
Biochemical reactions
Serotyping, phage typing, pathogenicity testing
Bacterial classification – the species concept in bacteria, phylogenetic classification, Adansonian classification, molecular or genetic classification, intra-species classification
Nomenclature-casual name and scientific name

Bacterial genetics
Basic principles of molecular biology
Bacterial DNA
Extra-chromosomal genetic elements-plasmids, episomes
Genotypic and phenotypic variations
Mutations
Transmission of genetic material – Transformation, Transduction, Lysogenic conversion, Conjugation
Plasmids - F factor, Col factor, Resistance transfer factor
Genetic mechanisms of drug resistance in bacteria
Transposable genetic elements
Genetic engineering

Sterilization and Disinfection
Definitions – sterilization, disinfection, antisepsis
Physical agents- Dry heat, moist heat, Filtration, Radiation
Chemical agents – Alcohols, Aldehydes, Phenolics, Chlorine compounds, others.
Sterilization control – Physical, chemical, biological indicators
Characteristics of ideal disinfectant
Factors affecting potency of disinfectants
Testing of disinfectants
Application of knowledge of sterilization and disinfection in clinical practice

Microbial control
History of discovery of antibiotics
Classification of Antibiotics based on mechanism of action
Mechanism of action of different Antibiotics – Penicillin, Synthetic penicillins Macrolides, Aminoglycosides, Carbapenams, Monobactum, Cephalosporins Glycopeptides
Antibiotic susceptibility testing – Kirby- Bauer method, Stokes method, MIC
Antifungal agents, Antiviral agents, Chemotherapy of parasitic infections
Normal Microbial flora
- Commensals, pathogens
- Colonization, Infection
- Normal flora of different sites – Skin, oral cavity, upper respiratory tract, conjunctiva, gut, ear, nose, vagina

Microbial pathogenicity and immunity
- Classification of infection
- Sources of infection in man
- Methods of transmission of infection
- Factors predisposing to microbial pathogenicity
- Exotoxins and Endotoxins
- Types of infectious diseases
- Innate and Acquired immunity

II. Immunology

Structures and functions of immune system
- Introduction and Definitions
- Central lymphoid organs
- Peripheral lymphoid organs
- Cells of Lympho-reticular system
- Phagocytic cells – blood macrophages and tissue macrophages, functions,
- Microphages – neutrophils, basophils and eosinophils

Cells of immune system
- T lymphocytes and subsets
- B lymphocytes
- Distinguishing characteristics of T cells, B cells and Macrophages
- Killer cells
- Natural killer cells
- Null cells
- Phagocytic cells – Macrophages and Microphages

Immune response / immunity
- Introduction
- Cellular immune response – Scope of CMI, induction of CMI, lymphokines and Interleukins, detection of CMI, transfer factor. Interactions between cellular and humoral immune responses
- Immunological tolerance
Theories of immune response

Antigen
Definitions of Antigen, hapten, pro antigen, antigenic determinant etc
Determinants of antigenicity –
Isospecificity, autospecificity, organ specificity, heterogenetic specificity

Antibody
General characteristics
Structure of immunoglobulin
Immunoglobulin classes
Properties of the different immunoglobulins
Abnormal immunoglobulins
Immunoglobulin specificities

The complement system
Introduction and Definition
Components of Complement
Classical pathway – activation, sequence of events
Alternate pathway – activation, the Complement cascade, reaction sequence,
components, biological activity of released fragments
Regulation of Complement activation
Biological effects of Complement
Clinical syndromes associated with genetic deficiency of Complement components
Quantification of Complement and Components of Complement

Antigen antibody reactions
Introduction and definitions
General feature of Antigen Antibody reactions
Measurement of antigen and antibody
Precipitation reaction – characteristics and definition
Mechanism of precipitation
Applications of precipitation reactions
Electroimmunodiffusion – countercurrent immunoelectrophoresis and
Rocket electrophoresis

Agglutination reactions
General features
Applications of agglutination reaction

Complement fixation tests
General features
Complement fixation test - principle, methodology and applications
Indirect Complement fixation test
Other Complement depending serological tests

Neutralization tests - Virus neutralization and toxin neutralization
Opsonisation - Opsonins and Opsonisation
Immunofluorescence - Principle, fluorescent dyes, applications
Radioimmunoassay - Principle, radioactive elements used, application
ELISA - Principle, application, types of ELISA

Immune Electronmicroscopy

Hypersensitivity
Introduction and definitions
Classification of Hypersensitivity reactions
Distinguishing features of immediate and delayed types of hypersensitivity
Type 1 - hypersensitivity
 Atopy - definition, mechanism and characteristics
Type 2 - Hypersensitivity - mechanism and features
Type 3 - Hypersensitivity - mechanism, Arthus reaction and Serum sickness
Type 4 - Hypersensitivity - mechanism, Tuberculin type and contact dermatitis type.

Auto immunity
Definition and introduction
Characteristics of Autoimmune disease
Mechanisms of autoimmunization
Classification of Autoimmune diseases - Hemocytolytic, Localized and Systemic
Clinical features of various autoimmune diseases.
Pathogenesis of autoimmune diseases

Major Histocompatibility complex
Introduction
The HLA Complex and HLA antigens
HLA typing
MHC restriction
Clinical application of the knowledge of HLA typing

Transplantation immunology
Introduction
Classification of transplants
Terminology of grafts
The allograft reaction - description and mechanism
Histocompatibility antigens
Factors favouring allograft survival
Graft vs Host reaction

Tumor Immunology
Introduction
Clinical evidence of immune response in malignancy
Tumor antigens
Immune response in malignancy
Immunological surveillance
Immunotherapy of cancer

Immunodeficiency diseases
Introduction and classification of immunodeficiency diseases
Primary and Secondary immunodeficiencies
Cellular immunodeficiencies
Combined immunodeficiencies – various syndromes
Disorders of Complement
Disorders of phagocytosis – various syndromes

Immunohaematology
Introduction
Various blood group systems

Immunoprophylaxis against infectious diseases
Introduction
Active immunization – All vaccines currently used
Passive immunization - Anti sera, pooled normal human immunoglobulin, Specific immunoglobulins
Immunization schedule
Vaccination requirements for health care workers
Vaccination requirements for international travel
Vaccination for immunosuppressive individuals and pregnant women.
EPI and UPI

III. SYSTEMATIC BACTERIOLOGY

Classification, Morphology, Culture characteristics, Biochemical reactions, Virulence factors, Pathogenicity and Diseases caused by Bacterial pathogens and epidemiology, Lab diagnosis, Treatment and prevention of infections caused by them

1. Staphylococcus – S. aureus, S.epidermidis, S. saprophyticus, Micrococi
2. Streptococcus – Groups A, B, C, D, G, Enterococci, S.pneumoniae, viridans streptococci
3. Neisseria- Neisseria meningitides, Neisseria gonorrhoeae, Commensal Neisseria, Moraxella catarrhalis
4. Corynebacteria - Corynebacterium diphtheria, other pathogenic Corynebacteria, Diphtheroids
5. Bacillus - Bacillus anthracis, Anthracoid bacilli, Bacillus cereus
6. Clostridium - Clostridium perfringens, Clostridium septicum, Clostridium oedematiens, and Clostridium histolyticum, Clostridium tetani, Clostridium botulinum, Clostridium difficile
7. Non - sporing anaerobes - The anaerobic gram positive and gram negative cocci, anaerobic gram positive and gram negative bacilli
8. Mycobacteria - Mycobacterium tuberculosis, RNTCP, Atypical Mycobacteria Mycobacterium leprae
9. Actinomycetes and Nocardia
10. Escherichia coli – EPEC, ETEC, EIEC, EHEC,
11. Klebsiella
12. Proteus
14. Shigella - Shigella dysenteriae, Shigella boydii, Shigella flexneri, Shigella sonnei
15. Yersinia - Yersinia pestis, Yersinia pseudotuberculosis, Yersinia enterocolitica
16. Pasteurella and Francisella- Pasteurella multocida, Francisella tularensis
17. Hemophilus - Hemophilus influenzae, Hemophilus aegypticus, Hemophilus ducreyi, Hemophilus parainfluenza, Gardnerella vaginalis
18. Bordetella - Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica
21. Campylobacter - Campylobacter jejuni, Campylobacter fetus, Campylobacter pylori
22. Pseudomonas - Pseudomonas aeruginosa, Other Pseudomonas- Pseudomonas mallei and Pseudomonas pseudomallei, Stenetrophomonas altophilia, Burkholdaria cepacia
23. Spirochaetes - Borrelia – B.recurrentis, B. vincenti, B. burgdorferi Leptospira and Treponema
24. Rickettsiae, Typhus fever group – Epidemic and Endemic typhus Spotted fever group, Scrub typhus, Trench fever, Q fever Bartonella bacilliformis – characteristics and infection caused
25. Chlamydia – Chlamydia trachomatis, Chlamydia pneumoniae
26. Mycoplasma and Ureaplasma

IV. Parasitology

1. General introduction
 History
 Parasitism – description, definitions
 Outline of sources of infections
 Outline of modes of infection
 Course of infection
 Pathogenesis
 Immunity in parasitic infections
 Classification

2. Classification, geographical distribution, Morphology, Life cycle, reproduction, Reservoirs, definitive host, intermediate host, pathogenicity and clinical features, lab diagnosis, treatment, prophylaxis of infestation / infection due to

1. Protozoa
 a) Amoebae - Entamoeba histolytica, other intestinal Amoebae, Pathogenic free living Amoebae - Acanthamoeba and Naegleria Blastocystis hominis.
 b) Flagellates - Intestinal and Haemoflagellates, Intestinal flagellates - Giardia lamblia, Trichomonas vaginalis, other, intestinal flagellates - morphology and clinical significance, Haemoflagellates - Trypanosomes - African and South American, Trypanosomiasis. Leishmania - Leishmania donovani, Old world cutaneous, leishmaniasis and New world cutaneous leishmaniasis.
 c) Malarial parasites, Geographical distribution, life cycle – ring forms, trophozoites, schizont, and gametocytes, Plasmodium vivax, Plasmodium falciparum, Plasmodium malariae, Plasmodium ovale Culture of malarial parasites Pathogenesis and clinical features, recrudescence and relapse, Complications of malaria – Blackwater fever, malignant tertian malaria, Cerebral malaria.
d) Miscellaneous Sporozoa and Microspora, Toxoplasma gondii, Sarcocystis, Isospora, Cryptosporidium, Cyclospora, Microsporidia, Babesia, Prototheca,
e) Ciliate protozoa - Balantidium coli.

2. Helminths
 b) Cestodes - Tapeworms, Diphyllobothrium latum, Sparganosis, Taenia saginata, Taenia solium, Echinococcus granulosus, Echinococcus multicellularis, Hymenolepis nana, H. dimunuta, Diylycidium caninum and Coenurosis.
 d) Filarial worms, Lymphatic filariasis - Wuchereria bancrofti, Brugia malayi, Subcutaneous filariasis - Loa Loa, Onchocerca volvulus, Mansonella streptocerca, Serous cavity filariasis - Mansonella ozzardi, Mansonella perstans.
e) Guinea worm, Dracunculus medinensis.
 f) Miscellaneous nematodes, Angiostrongylus cantonensis, Capillaria philippinensis Gnathostoma spinigerum, Anisakiasis, Larva migrans - cutaneous and visceral.

3. Diagnostic methods in Parasitology
 Examination of feces - wet mounts, thick smears, stained smears, concentration methods - floatation and sedimentation methods, fecal, culture Examination of blood - thin and thick smears for malarial parasite, Examination for microfilaria, Culture methods - Ameba, Leishmania and Trypanosomes, Malarial, parasite, Animal inoculation and xenodiagnosis, Immunological diagnosis - serology and skin tests.

V. General Virology

1. Morphology of Viruses
2. Replication of viruses
3. Cultivation of viruses
4. Classification of viruses
5. Assay of viruses
6. Quantitative and Quantal assays
7. Genetics of viruses
8. Identification of viruses and lab diagnosis
9. Pathogenesis and Host response to viral infections
10. Immunity in virus infections
11. Immunoprophylaxis, Chemoprophylaxis and chemotherapy
12. Bacteriophage – Morphology, Life cycle, Phage assay, phage typing, bacteriocins

VI. SYSTEMATIC VIROLOGY

Classification, general characteristics, morphology, physical and chemical properties, antigenic structure, cultivation and epidemiology, pathogenesis, clinical features, lab diagnosis, treatment and prevention of infections caused by the following viruses

1. Poxviruses - Variola and vaccinia viruses, Small pox, Cow pox and milker’s nodes
2. Orf, Molluscum contagiosum
3. Adenoviruses
4. Herpes viruses – Herpes simplex 1 and 2, Varicella zoster, Cytomegalovirus, Epstein Barr virus, HHV 6, HHV 7, HHV 8
5. Picornaviruses – Enteroviruses – Poliovirus, Coxackieviruses, Echoviruses, Rhinoviruses
6. Orthomyxoviruses - Influenza viruses
7. Paramyxoviruses - Mumps virus, Parainfluenza viruses, Respiratory, syncytial virus, Measles viruses, corona viruses
8. Arbo viruses, Group A arboviruses, Group B arboviruses- Mosquito borne and Tick, borne groups, Bunyaviridae, Orbivirus and Vesiculovirus
9. Rhabdo viruses - Rabies virus
10. Hepatitis viruses – Classification, Hepatitis A, Hepatitis B, Hepatitis C virus, Hepatitis D viruses, Hepatitis E virus, other hepatitis causing viruses including HGV
11. Viruses causing diarrhea - Rota virus, Norwalk, Calici and Astro virus
12. Slow viruses, Group A- Visna and Maedi, Group B- Mink encephalopathy, Creutzfeldt-Jakob virus, Kuru, Group C-SSPE, Progressive multi focal leuco encephalopathy, Bovine spongiform encephalopathy, Prions
13. Oncogenic viruses, List of Oncogenic viruses (RNA and DNA), Mechanisms of viral oncogenesis, Oncogenes and chromosomal location

VII. GENERAL MYCOLOGY
Introduction and classification, Definitions and terminologies, Methods of reproduction, Methods of cultivation, Pathogenesis and Lab diagnosis of mycotic infections, Economic importance and harmful effects of Fungi – Mycotoxins

VIII. SYSTEMATIC MYCOLOGY
1. Superficial Mycoses, Surface infections and cutaneous infections, Morphology, cultural characteristics of causative agents, pathogenicity, and lab diagnosis
2. Sub-cutaneous mycoses, Mycotic mycetoma, chromoblastomycosis, Sporotrichosis, Rhinosporidiosis and sub cutaneous phycomycosis
3. Systemic mycoses, Cryptococcosis, Blastomycosis, Paracoccidiodomycosis, Coccidiodomycosis, Histoplasmosis
4. Opportunistic mycosis, Aspergillosis, Mucormycosis, Penicilliosis, Candidiasis
5. Otomycosis, Oculomycosis
6. Antifungal agents

IX. APPLIED CLINICAL MICROBIOLOGY
1. Collection, transport and disposal of specimens
2. Organ specific infections
3. Central nervous system infections
4. Respiratory infections – Upper / Lower
5. Urinary tract infections
6. Gastro intestinal infections – acute / chronic
7. Infections of the eye, ear and skin
8. Infection of CVS
10. Zoonotic infections
11. Microbiology of Environment (food, water, milk and air)
12. Hospital infections (Prevention and control)
13. Basic molecular biology in relation to diagnosis of infectious diseases
14. Bioterrorism

Topics For Integrated Teaching
1. Pyrexia of unknown origin- integration with internal medicine, pharmacology, pathology, biochemistry.
2. Rheumatic fever- integration with internal medicine, pharmacology, pathology, surgery, Community medicine.
3. Tuberculosis- internal medicine, pharmacology, pathology, surgery, Pediatrics, Radiology, Community medicine.
4. Pneumonia- paediatrics, internal medicine, pharmacology, pathology.
5. Syphilis– internal medicine, pharmacology, pathology, Dermatology, Obstetrics and Gynecology.
6. Malaria- Paediatrics, internal medicine, Pharmacology, Pathology, Community medicine.
7. Meningitis- paediatrics, internal medicine, Pharmacology, Pathology, Biochemistry, Community medicine.
8. Jaundice - Internal medicine, Biochemistry, Pathology, Pediatrics, Surgery, Obstetrics and Gynecology, Community medicine.
9. Diarrhoea- Paediatrics, Internal medicine, Biochemistry, Community medicine.
10. HIV / AIDS

1. **Bacteriology**
 1.1 Staining
 a. Smear preparation
 b. Staining techniques
 c. Grams stain
 d. Special Stains – Acids fast staining, Albert, Ponders and Capsule staining

1.2 Demonstration
 a) Aerobic and anaerobic culture methods
 b) Demonstration of culture media
 c) Demonstration of growth characteristics, biochemical characteristics,
 d) antibiotic susceptibilities and other special features of important bacteria
 e) Demonstration of sterilization techniques and their applications
 f) Demonstration of commonly used Disinfectants
 g) Demonstration of bacterial motility – Hanging drop / other methods
 h) Demonstration of antibiotic susceptibility testing

1.3 Applied Exercises
 Systematic – Identification of the pathogen from the given clinical material based on staining property, cultural characters, biochemical and serological tests – in the context of clinical syndromes.

2. **Immunology**
 2.1 Demonstration of different types of Antigen Antibody reactions
 a. Agglutination – slide, tube and passive agglutination.
 b. Flocculation – VDRL
 c. Precipitation - Gel diffusion
 d. Complement fixation test
 e. Tagged immunoassays – ELISA and Immunoblot assays

2.2 Applied Exercise
 Interpretation of the given immunological tests in the context of clinical syndromes.

3. **Mycology**
 3.1 Staining/microscopy
 a. Lactophenol cotton blue stain
 b. Gram’s Stain for Candida
 3.2 Demonstration
Identification of the given fungus by cultural morphology and wet mount preparation / staining

3.3 Applied Exercise
Identification, interpretation and discussion on the given fungus in the context of clinical syndromes

4. Virology
4.1 Demonstration of
a. Different methods of cultivation of viruses
b. CPE in cell cultures
c. Inclusion bodies
4.2 Serodiagnosis of viral infection
 CFT, HAI, ELISA
4.3 Applied Exercise
Identification, interpretation and discussion on the given virus in the context of clinical syndromes

5. Parasitology
Microscopy
Stool examination for ova and cyst - saline and iodine preparation
5.2 Demonstration
a) Concentration techniques – Floatation & sedimentation techniques
b) Demonstration of malarial parasite – different species and stages
c) Demonstration of Microfilariae
d) Demonstration of histopathological specimens - Amebic ulcers in
e) Intestine, Amebic liver abscess, Hydatid cyst

Applied Exercises
Identification of parasites (Adult and larval forms) and discussion in the context of clinical syndromes.

SYSTEMS COVERED

PAPER – I

a) General Bacteriology – Sterilization
b) General Bacteriology - Genetics
c) Immunology – Anatomy and normal functions in Vivo and in Vitro
d) Immunology – in diseases
e) Systematic Bacteriology – Obligate bacteria
f) Systematic Bacteriology – facultative bacteria

PAPER – II

Parasitology
Virology
Mycology
Applied Microbiology

BOOKS RECOMMENDED

1. Text book of Microbiology – Ananthanarayanan ans Jayaram Panicker
2. Text Book of Microbiology By .Prof. C.P. Baveja
4. Medical Parasitology – By Prof. C.P. Baveja

REFERENCE BOOKS

- Medical Microbiology – Vol 1 Greenwood, Vol II Maekie of Mleartney
- Medical Microbiology by Jawetz
- Essential Immunology - Ivon M. Roitt
- Immunology – Kuby

JOURNALS FOR REFERENCE

- Journal of Medical Microbiology, Lippincott
- Journal of Clinical Microbiology, The American Society for microbiology
- Indian Journal of Medical Research (ICMR)

FORENSIC MEDICINE

CURRICULUM

(i) Goal

The goal of teaching Forensic medicine to undergraduate students is to impart knowledge of legal procedures involved in medical practice and to apply the knowledge of medical science for the purpose of ensuring justice in courts of law. Further the teaching will help the students to know of medical ethics and etiquette to be followed during the practice of medicine. As it is a well known fact that the medical service become vulnerable to be criticized day to day by the litigatory society, a medical student should be prepared to practice medicine
without being entangled either by professional, criminal or consumer law. Hence the knowledge in forensic medicine is most essential and useful and it can be gained only during their studentship.

(ii) Objectives

(A) Knowledge

At the end of the course the student will be able to

(a) appear in a Court of law as a Registered Medical Practitioner and give evidence in cases of homicide, assault, sexual offences, alcoholic intoxication, drug dependence and other cases requiring medical opinion.

(b) practice medicine in the society following medical ethics and etiquette as prescribed by the Medical Council of India.

(B) Skills

(a) to conduct autopsy on medico-legal cases and issue postmortem certificates; to examine cases of wounds (assault, homicide etc.,) at the hospital and issue required medico-legal certificates (wound certificates).

(b) to treat cases of poisoning and issue certificates to the court and the police.

(C) Integration

The student will be able to integrate and apply his/her knowledge of anatomy, physiology, biochemistry, pathology, microbiology, medicine, surgery and obstetrics and gynecology for the purpose of legal procedures and execution of justice.

Detailed Syllabus

1. Introduction; History; legal procedures in India; medical and medico legal documents; evidences, witnesses; types and powers of Court; laws related to medical profession.

1. Historical aspects of medical ethics and Medical Council of India, State Medical Council: structure, functions, powers; duties of medical practitioners towards patients and relatives, State, teachers and colleagues; consent: definition, types, application in medical practice; medical negligence: civil, criminal; Consumer Protection Act: rights and liabilities of doctors, medical indemnity insurance; human rights and violation; duties of medical practitioners to victims of torture; Human organ transplantation Act.

2. Identification of the living and the dead.

3. Forensic thanatology; death; causes of death; mechanism and manner of death; changes after death; artifacts; medicolegal death investigation; exhumation.
4. Traumatic pathology; general aspects and classification; mechanical injuries; regional injuries; thermal injuries; injuries due to electricity, lightning and radiation; train and road traffic accidents; firearm and explosion injuries; medicolegal aspects of wounds.

5. Asphyxia; general aspects; patho-physiology and classification; mechanical asphyxia; hanging; strangulation; drowning; smothering, choking, garroting, burking, yoking.

6. Sexual jurisprudence; virginity, pregnancy, delivery, assisted pregnancy; impotence, sterility, artificial insemination; medical termination of pregnancy; Prenatal sex determination Act; abortion; infanticide; child abuse; S.I.D.S (sudden infant death syndrome); sexual offences.

7. Forensic science; Locard’s exchange principle; lie detector; superimposition; D.N.A. finger printing.

8. Toxicology; general aspects and classification; corrosive poisons; irritant poisons; neural poisons; somniferous; inebriant; delirient; spinal; peripheral; cardiac poisons; asphyxiants; miscellaneous; drug abuse.

RECOMMENDED BOOKS

- Narayanareddy K. S., The Essentials of Forensic Medicine & Toxicology, Published by K. Sugana Devi, Hyderabad.
- Apurbanandy, Principles of Forensic Medicine, Published by New Central Book Agency.
- Parikh C.K., Parikh’s Textbook of Medical Jurisprudence and Toxicology, Publishers, Bangalore.
- Guharaj P. V., Forensic Medicine, Orient Longman Limited
- C. A. Franklin, Modi’s Medical, Jurisprudence and Toxicology, Published by M. Tripathi Private Limited, Bombay.
- Parikh C. K. Medico Legal Post Mortem in India, Published by Medical Publication.
- Keith Simpson, Bernard Knight, Forensic Medicine, ELBS.
- Pillay V.V., Text book of Forensic Medicine, Paras Publication.
- Forensic Medicine and Toxicology – Karmakar
- Medical Jurisprudence & Toxicology – Lyon’s

JOURNALS FOR REFERENCE

- Medicine Law and Science.
- American Journal of Forensic Medicine and Pathology – Published by Lippincott William & Wilkins.